15,340 research outputs found

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Assessing mobile mixed reality affordances as a comparative visualization pedagogy for design communication

    Get PDF
    Spatial visualisation skills and interpretation are critical in the design professions but are difficult for novice designers. There is growing evidence that mixed reality visualisation improves learner outcomes, but often these studies are focused on a single media representation and not on a comparison between media and the underpinning learning outcomes. Results from recent studies highlight the use of comparative visualisation pedagogy in design through learner reflective blogs and pilot studies with experts, but these studies are limited by expense and designs familiar to the learner. With increasing interest in mobile pedagogy, more assessment is required in understanding learner interpretation of comparative mobile mixed reality pedagogy. The aim of this study is to do this by evaluating insights from a first-year architectural design classroom through studying the impact and use of a range of mobile comparative visualisation technologies. Using a design-based research methodology and a usability framework for accessing comparative visualisation, this paper will study the complexities of spatial design in the built environment. Outcomes from the study highlight the positives of the approach but also the improvements required in the delivery of the visualisations to improve on the visibility and visual errors caused by the lack of mobile processing

    Collaborative Gaze Channelling for Improved Cooperation During Robotic Assisted Surgery

    Get PDF
    The use of multiple robots for performing complex tasks is becoming a common practice for many robot applications. When different operators are involved, effective cooperation with anticipated manoeuvres is important for seamless, synergistic control of all the end-effectors. In this paper, the concept of Collaborative Gaze Channelling (CGC) is presented for improved control of surgical robots for a shared task. Through eye tracking, the fixations of each operator are monitored and presented in a shared surgical workspace. CGC permits remote or physically separated collaborators to share their intention by visualising the eye gaze of their counterparts, and thus recovers, to a certain extent, the information of mutual intent that we rely upon in a vis-à-vis working setting. In this study, the efficiency of surgical manipulation with and without CGC for controlling a pair of bimanual surgical robots is evaluated by analysing the level of coordination of two independent operators. Fitts' law is used to compare the quality of movement with or without CGC. A total of 40 subjects have been recruited for this study and the results show that the proposed CGC framework exhibits significant improvement (p<0.05) on all the motion indices used for quality assessment. This study demonstrates that visual guidance is an implicit yet effective way of communication during collaborative tasks for robotic surgery. Detailed experimental validation results demonstrate the potential clinical value of the proposed CGC framework. © 2012 Biomedical Engineering Society.link_to_subscribed_fulltex

    Adapting Flat Design Concept in Digital Graphics to Wayfinding Signage Development: Redirecting Movement and Recreating the Environment

    Get PDF
    People visiting built environments are desirous of accomplishing their aim of visiting such place within the shortest possible time, devoid of negative feelings/ spatial anxiety. Meanwhile, some environment such as hospital, academic setting among others are known for complex structures whereby navigation can become daunting especially when characterised by poor wayfinding system. This therefore necessitated a study on development of wayfinding signage adapting flat design which ordinarily was a design concept invented for digital screens. Innovatively, the wayfinding system was printed for Fine and Applied Arts Building, Olabisi Onabanjo University, Ibogun Campus, relying also on colour psychology, typography, shape and user experience. Research method adopted for the study was mixed method: experimental and survey. User perception of the wayfinding system was sampled using questionnaire administered to 313 respondents. After thorough analysis, results indicated there is consistency in the interior and exterior signage colours, signage textual information are bold and descriptive. The wayfinding system with its shapes added better aesthetic to the environment. This study succeeded in demonstrating how creativity can be put into practise. Thus, recommended that Visual designers (especially in Africa) should be open to new and diverse design concepts for effective visual solution

    Spatial representation and visual impairement - Developmental trends and new technological tools for assessment and rehabilitation

    Get PDF
    It is well known that perception is mediated by the five sensory modalities (sight, hearing, touch, smell and taste), which allows us to explore the world and build a coherent spatio-temporal representation of the surrounding environment. Typically, our brain collects and integrates coherent information from all the senses to build a reliable spatial representation of the world. In this sense, perception emerges from the individual activity of distinct sensory modalities, operating as separate modules, but rather from multisensory integration processes. The interaction occurs whenever inputs from the senses are coherent in time and space (Eimer, 2004). Therefore, spatial perception emerges from the contribution of unisensory and multisensory information, with a predominant role of visual information for space processing during the first years of life. Despite a growing body of research indicates that visual experience is essential to develop spatial abilities, to date very little is known about the mechanisms underpinning spatial development when the visual input is impoverished (low vision) or missing (blindness). The thesis's main aim is to increase knowledge about the impact of visual deprivation on spatial development and consolidation and to evaluate the effects of novel technological systems to quantitatively improve perceptual and cognitive spatial abilities in case of visual impairments. Chapter 1 summarizes the main research findings related to the role of vision and multisensory experience on spatial development. Overall, such findings indicate that visual experience facilitates the acquisition of allocentric spatial capabilities, namely perceiving space according to a perspective different from our body. Therefore, it might be stated that the sense of sight allows a more comprehensive representation of spatial information since it is based on environmental landmarks that are independent of body perspective. Chapter 2 presents original studies carried out by me as a Ph.D. student to investigate the developmental mechanisms underpinning spatial development and compare the spatial performance of individuals with affected and typical visual experience, respectively visually impaired and sighted. Overall, these studies suggest that vision facilitates the spatial representation of the environment by conveying the most reliable spatial reference, i.e., allocentric coordinates. However, when visual feedback is permanently or temporarily absent, as in the case of congenital blindness or blindfolded individuals, respectively, compensatory mechanisms might support the refinement of haptic and auditory spatial coding abilities. The studies presented in this chapter will validate novel experimental paradigms to assess the role of haptic and auditory experience on spatial representation based on external (i.e., allocentric) frames of reference. Chapter 3 describes the validation process of new technological systems based on unisensory and multisensory stimulation, designed to rehabilitate spatial capabilities in case of visual impairment. Overall, the technological validation of new devices will provide the opportunity to develop an interactive platform to rehabilitate spatial impairments following visual deprivation. Finally, Chapter 4 summarizes the findings reported in the previous Chapters, focusing the attention on the consequences of visual impairment on the developmental of unisensory and multisensory spatial experience in visually impaired children and adults compared to sighted peers. It also wants to highlight the potential role of novel experimental tools to validate the use to assess spatial competencies in response to unisensory and multisensory events and train residual sensory modalities under a multisensory rehabilitation

    Adoption of innovative e-learning support for teaching: A multiple case study at the University of Waikato

    Get PDF
    In response to recent social, economic, and pedagogical challenges to tertiary-level teaching and learning, universities are increasingly investigating and adopting elearning as a way to engage and motivate students. This paper reports on the first year of a two-year (2009-2010) qualitative multiple case study research project in New Zealand. Using perspectives from activity theory and the scholarship of teaching, the research has the overall goal of documenting, developing, and disseminating effective and innovative practice in which e-learning plays an important role in tertiary teaching. A “snapshot” of each of the four 2009 cases and focused findings within and across cases are provided. This is followed by an overall discussion of the context, “within” and “across” case themes, and implications of the research

    Space, conversations and place: lessons and questions from organisational development

    Get PDF
    Physical workspace is distinguished from workplace. The latter embodies culture and should become the greater concern of FM. In the field of individual and group development spaces can add an extra gear to stimulate cognitive processes. We provide various examples and suggest modern workplaces, with their emphasis on interaction need to also focus on environments and spaces for individual and collective reflection

    Sub space: Enhancing the spatial awareness of trainee submariners using 3D simulation environments

    Get PDF
    Rapid advancements in computer technology have facilitated the development of practical and economically feasible three dimensional (3D) computer-generated simulation environments that have been utilized for training in a number of different fields. In particular, this development has been heavily influenced by innovations within the gaming industry, where First Person Shooter (FPS) games are often considered to be on the cutting edge of gaming technology in terms of visual fidelity and performance. 3D simulation environments built upon FPS gaming technologies can be used to realistically represent real world places, while also providing a dynamic and responsive experiential based learning environment for trainees. This type of training environment can be utilized effectively when training within the corresponding real world space may not be safe, practical, or economically feasible. This thesis explores the effectiveness of 3D simulation environments based on FPS gaming technologies to enhance the spatial awareness of trainees in unfamiliar real world spaces. The purpose was to identify the characteristics that contribute to effective learning within such environments. In order to identify these characteristics, a model was proposed representing the interrelationships between, and determinant factors of, the concepts of spatial cognition, learning within a simulation environment, and computer-generated 3D environments. The Location and Scenario Training System (LASTS), developed by the Royal Australian Navy, was evaluated to determine whether experience within the LASTS environment could benefit trainee submariners on Collins class submarines. The LASTS environment utilises the Unreal Runtime FPS game engine to provide a realistic representation of the Main Generator Room (MGR) on-board a Collins class submarine. This simulation was used to engage trainees in a simplified exercise based on the location of items relevant to a 12 Point Safety Round performed inside the MGR. Five trainee submariners were exposed to LASTS and then required to conduct the same exercise on-board a Collins class submarine. This mode of learning was compared to traditional non-immersive classroom teaching involving five additional trainee submariners who were also required to complete the same exercise inside the MGR. A mixture of qualitative and quantitative approaches to data collection and analysis was used to ascertain the effectiveness of LASTS as well as the contributing factors to this and learners\u27 perception of the value of the environment. Results indicated that LASTS could be successfully used as a training tool to enhance the spatial awareness of trainee submariners with regard to the MGR on-board a Collins class submarine. LASTS trainees also demonstrated a better spatial understanding of the MGR environment as a result of their experience compared to trainees who were the recipients of traditional classroom based training. The contributing characteristics of the proposed model were also validated with reference to the data gathered from the LASTS case study. This indicated that the model could be utilized in the design of future 3D simulation environments based on gaming technology in order to facilitate effective spatial awareness training
    corecore