46 research outputs found

    Visual scene recognition with biologically relevant generative models

    No full text
    This research focuses on developing visual object categorization methodologies that are based on machine learning techniques and biologically inspired generative models of visual scene recognition. Modelling the statistical variability in visual patterns, in the space of features extracted from them by an appropriate low level signal processing technique, is an important matter of investigation for both humans and machines. To study this problem, we have examined in detail two recent probabilistic models of vision: a simple multivariate Gaussian model as suggested by (Karklin & Lewicki, 2009) and a restricted Boltzmann machine (RBM) proposed by (Hinton, 2002). Both the models have been widely used for visual object classification and scene analysis tasks before. This research highlights that these models on their own are not plausible enough to perform the classification task, and suggests Fisher kernel as a means of inducing discrimination into these models for classification power. Our empirical results on standard benchmark data sets reveal that the classification performance of these generative models could be significantly boosted near to the state of the art performance, by drawing a Fisher kernel from compact generative models that computes the data labels in a fraction of total computation time. We compare the proposed technique with other distance based and kernel based classifiers to show how computationally efficient the Fisher kernels are. To the best of our knowledge, Fisher kernel has not been drawn from the RBM before, so the work presented in the thesis is novel in terms of its idea and application to vision problem

    Towards Efficient Intrusion Detection using Hybrid Data Mining Techniques

    Get PDF
    The enormous development in the connectivity among different type of networks poses significant concerns in terms of privacy and security. As such, the exponential expansion in the deployment of cloud technology has produced a massive amount of data from a variety of applications, resources and platforms. In turn, the rapid rate and volume of data creation in high-dimension has begun to pose significant challenges for data management and security. Handling redundant and irrelevant features in high-dimensional space has caused a long-term challenge for network anomaly detection. Eliminating such features with spectral information not only speeds up the classification process, but also helps classifiers make accurate decisions during attack recognition time, especially when coping with large-scale and heterogeneous data such as network traffic data. Furthermore, the continued evolution of network attack patterns has resulted in the emergence of zero-day cyber attacks, which nowadays has considered as a major challenge in cyber security. In this threat environment, traditional security protections like firewalls, anti-virus software, and virtual private networks are not always sufficient. With this in mind, most of the current intrusion detection systems (IDSs) are either signature-based, which has been proven to be insufficient in identifying novel attacks, or developed based on absolute datasets. Hence, a robust mechanism for detecting intrusions, i.e. anomaly-based IDS, in the big data setting has therefore become a topic of importance. In this dissertation, an empirical study has been conducted at the initial stage to identify the challenges and limitations in the current IDSs, providing a systematic treatment of methodologies and techniques. Next, a comprehensive IDS framework has been proposed to overcome the aforementioned shortcomings. First, a novel hybrid dimensionality reduction technique is proposed combining information gain (IG) and principal component analysis (PCA) methods with an ensemble classifier based on three different classification techniques, named IG-PCA-Ensemble. Experimental results show that the proposed dimensionality reduction method contributes more critical features and reduced the detection time significantly. The results show that the proposed IG-PCA-Ensemble approach has also exhibits better performance than the majority of the existing state-of-the-art approaches
    corecore