19 research outputs found

    Cyber-Physical Systems for Micro-/Nano-assembly Operations: a Survey

    Get PDF
    Abstract Purpose of Review Latest requirements of the global market force manufacturing systems to a change for a new production paradigm (Industry 4.0). Cyber-Physical Systems (CPS) appear as a solution to be deployed in different manufacturing fields, especially those with high added value and technological complexity, high product variants, and short time to market. In this sense, this paper aims at reviewing the introduction level of CPS technologies in micro/nano-manufacturing and how these technologies could cope with these challenging manufacturing requirements. Recent Findings The introduction of CPS is still in its infancy on many industrial applications, but it actually demonstrates its potential to support future manufacturing paradigm. However, only few research works in micro/nano-manufacturing considered CPS frameworks, since the concept barely appeared a decade ago. Summary Some contributions have revealed the potential of CPS technologies to improve manufacturing performance which may be scaled to the micro/nano-manufacturing. IoT-based frameworks with VR/AR technologies allow distributed and collaborative systems, or agent-based architectures with advance algorithm implementations that improve the flexibility and performance of micro-/nano-assembly operations. Future research of CPS in micro-/nano-assembly operations should be followed by more studies of its technical deployment showing its implications under other perspectives, i.e. sustainable, economic, and social point of views, to take full advance of all its features

    Force Sensing and Control in Micromanipulation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Novel estimation and control techniques in micromanipulation using vision and force feedback

    Get PDF
    With the recent advances in the fields of micro and nanotechnology, there has been growing interest for complex micromanipulation and microassembly strategies. Despite the fact that many commercially available micro devices such as the key components in automobile airbags, ink-jet printers and projection display systems are currently produced in a batch technique with little assembly, many other products such as read/write heads for hard disks and fiber optics assemblies require flexible precision assemblies. Furthermore, many biological micromanipulations such as invitro-fertilization, cell characterization and treatment rely on the ability of human operators. Requirement of high-precision, repeatable and financially viable operations in these tasks has given rise to the elimination of direct human involvement, and autonomy in micromanipulation and microassembly. In this thesis, a fully automated dexterous micromanipulation strategy based on vision and force feedback is developed. More specifically, a robust vision based control architecture is proposed and implemented to compensate errors due to the uncertainties about the position, behavior and shape of the microobjects to be manipulated. Moreover, novel estimators are designed to identify the system and to characterize the mechanical properties of the biological structures through a synthesis of concepts from the computer vision, estimation and control theory. Estimated mechanical parameters are utilized to reconstruct the imposed force on a biomembrane and to provide the adequate information to control the position, velocity and acceleration of the probe without damaging the cell/tissue during an injection task

    Haptic feedback in teleoperation in Micro-and Nano-Worlds.

    No full text
    International audienceRobotic systems have been developed to handle very small objects, but their use remains complex and necessitates long-duration training. Simulators, such as molecular simulators, can provide access to large amounts of raw data, but only highly trained users can interpret the results of such systems. Haptic feedback in teleoperation, which provides force-feedback to an operator, appears to be a promising solution for interaction with such systems, as it allows intuitiveness and flexibility. However several issues arise while implementing teleoperation schemes at the micro-nanoscale, owing to complex force-fields that must be transmitted to users, and scaling differences between the haptic device and the manipulated objects. Major advances in such technology have been made in recent years. This chapter reviews the main systems in this area and highlights how some fundamental issues in teleoperation for micro- and nano-scale applications have been addressed. The chapter considers three types of teleoperation, including: (1) direct (manipulation of real objects); (2) virtual (use of simulators); and (3) augmented (combining real robotic systems and simulators). Remaining issues that must be addressed for further advances in teleoperation for micro-nanoworlds are also discussed, including: (1) comprehension of phenomena that dictate very small object (< 500 micrometers) behavior; and (2) design of intuitive 3-D manipulation systems. Design guidelines to realize an intuitive haptic feedback teleoperation system at the micro-nanoscale level are proposed

    Soft Robotic Grippers

    Get PDF
    Advances in soft robotics, materials science, and stretchable electronics have enabled rapid progress in soft grippers. Here, a critical overview of soft robotic grippers is presented, covering different material sets, physical principles, and device architectures. Soft gripping can be categorized into three technologies, enabling grasping by: a) actuation, b) controlled stiffness, and c) controlled adhesion. A comprehensive review of each type is presented. Compared to rigid grippers, end-effectors fabricated from flexible and soft components can often grasp or manipulate a larger variety of objects. Such grippers are an example of morphological computation, where control complexity is greatly reduced by material softness and mechanical compliance. Advanced materials and soft components, in particular silicone elastomers, shape memory materials, and active polymers and gels, are increasingly investigated for the design of lighter, simpler, and more universal grippers, using the inherent functionality of the materials. Embedding stretchable distributed sensors in or on soft grippers greatly enhances the ways in which the grippers interact with objects. Challenges for soft grippers include miniaturization, robustness, speed, integration of sensing, and control. Improved materials, processing methods, and sensing play an important role in future research

    Ultra-Precise Assembly of Micro-Electromechanical Systems (MEMS) Components

    Full text link

    Functional Soft Robotic Actuators Based on Dielectric Elastomers

    Get PDF
    Dielectric elastomer actuators (DEAs) are a promising soft actuator technology for robotics. Adding robotic functionalities--folding, variable stiffness, and adhesion--into their actuator design is a novel method to create functionalized robots with simplified actuator configurations. We first propose a foldable actuator that has a simple antagonistic DEA configuration allowing bidirectional actuation and passive folding. To prove the concept, a foldable elevon actuator with outline size of 70 mm × 130 mm is developed with a performance specification matched to a 400 mm wingspan micro air vehicle (MAV) of mass 130 g. The developed actuator exhibits actuation angles up to ± 26 ° and a torque of 2720 mN·mm in good agreement with a prediction model. During a flight, two of these integrated elevon actuators well controlled the MAV, as proven by a strong correlation of 0.7 between the control signal and the MAV motion. We next propose a variable stiffness actuator consisting of a pre-stretched DEA bonded on a low-melting-point alloy (LMPA) embedded silicone substrate. The phase of the LMPA changes between liquid and solid enabling variable stiffness of the structure, between soft and rigid states, while the DEA generates a bending actuation. A proof-of-concept actuator with dimension 40 mm length × 10mm width × 1mm thickness and a mass of 1 g is fabricated and characterized. Actuation is observed up to 47.5 ° angle and yielding up to 2.4 mN of force in the soft state. The stiffness in the rigid state is ~90 × larger than an actuator without LMPA. We develop a two-finger gripper in which the actuators act as the fingers. The rigid state allows picking up an object mass of 11 g (108 mN), to be picked up even though the actuated grasping force is only 2.4 mN. We finally propose an electroadhesion actuator that has a DEA design simultaneously maximizing electroadhesion and electrostatic actuation, while allowing self-sensing by employing an interdigitated electrode geometry. The concept is validated through development of a two-finger soft gripper, and experimental samples are characterized to address an optimal design. We observe that the proposed DEA design generates 10 × larger electroadhesion force compared to a conventional DEA design, equating to a gripper with a high holding force (3.5 N shear force for 1 cm^2) yet a low grasping force (1 mN). These features make the developed simple gripper to handle a wide range of challenging objects such as highly-deformable water balloons (35.6 g), flat paper (0.8 g), and a raw chicken egg (60.9 g), with its lightweight (1.5 g) and fast movement (100 ms to close fingers). The results in this thesis address the creation of the functionalized robots and expanding the use of DEAs in robotics

    Micromanipulation in microfluidics using optoelectronic and acoustic tweezing

    Get PDF
    The thesis introduces a concept for a unified platform that enables the use of acoustic and electric fields for particle manipulations in microfluidic environments. In particular, optoelectronic tweezing (OET), also known as light induced dielectrophoresis is fused with acoustic tweezing, also known as acoustophoresis, on a versatile system. The system can be divided into two individual physical units. The first one represents the OET unit which integrates light induced electric fields into a robust microfluidic chip. The OET chip not only operates as a device for electric field generation but also as a transverse resonator to confine acoustic fields. These fields are the result of travelling surface acoustic waves excited by a piezoelectric transducer which defines the second unit. The developed platform is applied to a range of applications such as particle trapping, transporting, focussing, sorting as well particle alterations in form of cell lysis and microbubble insonation

    Development of an expert system for supporting the selection of robot grippers

    Get PDF
    The aim of this thesis is to lay the basis for the development of an expert system for the selection of robot grippers. This work has started with a review of the literature of the grasping principles, of releasing strategies and of the main problems concerning the automatic assembly or, more in general, the handling. Later, we have studied a set of parameters constituting the input of the expert system, together with a set of rules aimed at choosing the appropriate gripper. The work ends with a series of tests, with a focus on the food industry, reporting the results and discussing the possibility of future developments
    corecore