33,199 research outputs found

    Simulation Based Study of Safety Stocks under Short-Term Demand Volatility in Integrated Device Manufacturing.

    Get PDF
    © IEOM Society InternationalA problem faced by integrated device manufacturers (IDMs) relates to fluctuating demand and can be reflected in long-term demand, middle-term demand, and short-term demand fluctuations. This paper explores safety stock under short term demand fluctuations in integrated device manufacturing. The manufacturing flow of integrated circuits is conceptualized into front end and back end operations with a die bank in between. Using a model of the back-end operations of integrated circuit manufacturing, simulation experiments were conducted based on three scenarios namely a production environment of low demand volatility and high capacity reliability (Scenario A), an environment with lower capacity reliability than scenario A (Scenario B), and an environment of high demand volatility and low capacity reliability (Scenario C). Results show trade-off relation between inventory levels and delivery performance with varied degree of severity between the different scenarios studied. Generally, higher safety stock levels are required to achieve competitive delivery performance as uncertainty in demand increases and manufacturing capability reliability decreases. Back-end cycle time are also found to have detrimental impact on delivery performance as the cycle time increases. It is suggested that success of finished goods safety stock policy relies significantly on having appropriate capacity amongst others to support fluctuations

    A Case Study Of E-Supply Chain & Business Process Reengineering Of A Semiconductor Company In Malaysia

    Get PDF
    Penglibatan e-perniagaan dalam rantaian bekalan telah mewujudkan e-rantaian bekalan yang baru (e-SC) di firma-firma tempatan dan global. Due to globalization and advancement in information technology (IT), companies adopt best practices in e-business and supply chain management to be globally competitive as both are realities and prospects in 21st century

    Greening Consumer Electronics: Moving Away From Bromine and Chlorine

    Get PDF
    Presents case studies of seven electronics companies that have engineered environmental solutions that eliminate the use of most brominated and chlorinated chemicals that generate toxic materials. Discusses global standards and regulations

    Hybrid and modular multilevel converter designs for isolated HVDC–DC converters

    Get PDF
    Efficient medium and high-voltage dc-dc conversion is critical for future dc grids. This paper proposes a hybrid multilevel dc-ac converter structure that is used as the kernel of dc-dc conversion systems. Operation of the proposed dc-ac converter is suited to trapezoidal ac-voltage waveforms. Quantitative and qualitative analyses show that said trapezoidal operation reduces converter footprint, active and passive components' size, and on-state losses relative to conventional modular multilevel converters. The proposed converter is scalable to high voltages with controllable ac-voltage slope; implying tolerable dv/dt stresses on the converter transformer. Structural variations of the proposed converter with enhanced modularity and improved efficiency will be presented and discussed with regards to application in front-to-front isolated dc-dc conversion stages, and in light of said trapezoidal operation. Numerical results provide deeper insight of the presented converter designs with emphasis on system design aspects. Results obtained from a proof-of-concept 1-kW experimental test rig confirm the validity of simulation results, theoretical analyses, and simplified design equations presented in this paper. - 2013 IEEE.Scopu

    Future skills issues affecting industry sectors in Wales: electronics sector

    Get PDF

    The complex interaction between Global Production Networks, Digital Information Systems and International Knowledge Transfers

    Get PDF
    Traditionally many studies of knowledge in economics have focused on localized networks and intra-regional collaborations. However, the rising frequency by which firms collaborate within the context of global networks of production and innovation, the increasingly intricate divisions of labor involved and the extensive use of the Internet to facilitate interaction are all relatively novel trends that underline the importance of knowledge creation and flows across different locations. Focusing on this topic, the present chapter examines the complex interactions between global production networks (GPN), digital information systems (DIS) and knowledge transfers in information technology industries. It seeks to disentangle the various conduits through which different kinds of knowledge are transferred within such networks, and investigate how recent generations of DIS are affecting those knowledge transfers. The paper concludes that the dual expansion of GPN and DIS is adding new complexity to the practice of innovation: To access knowledge necessary for sustained creativity firms often have to link up with remote partners in GPN, but to be able to absorb and utilize this knowledge, they also frequently have to engage in local interactive learning processes. These local- global linkages - and the various skills necessary to operate them - are strongly interdependent, mutually reinforcing and critical for the development and maintenance of innovation-based competitiveness.

    Innovation Offshoring:Asia's Emerging Role in Global Innovation Networks

    Get PDF
    Most analysts agree that critical ingredients for economic growth, competitiveness, and welfare in the United States have been policies that encourage strong investment in research and development (R&D) and innovation. In addition, there is a general perception that technological innovation must be based in the United States to remain a pillar of the American economy. Over the past decade, however, the rise of Asia as an important location for "innovation offshoring" has begun to challenge these familiar notions. Based on original research, this report demonstrates that innovation offshoring is driven by profound changes in corporate innovation management as well as by the globalization of markets for technology and knowledge workers. U.S. companies are at the forefront of this trend, but Asian governments and firms are playing an increasingly active role as promoters and new sources of innovation. Innovation offshoring has created a competitive challenge of historic proportions for the United States, requiring the nation to respond with a new national strategy. This report recommends that such a strategy include the following elements: output forecasting techniques ... Improve access to and collection of innovation-related data to inform the national policy debate; Address "home-made" causes of innovation offshoring by sustaining and building upon existing strengths of the U.S. innovation system; Support corporate innovation by (1) providing tax incentives to spur early-state investments in innovation start-ups and (2) reforming the U.S. patent system so it is more accessible to smaller inventors and innovators; and Upgrade the U.S. talent pool of knowledge workers by (1) providing incentives to study science and engineering, (2) encouraging the development of management, interpretive, cross-cultural, and other "soft" capabilities, and (3) encouraging immigration of highly skilled workers.Innovation Networks, Innovation Offshoring, Asia

    Internationalisation of Innovation: Why Chip Design Moving to Asia

    Get PDF
    This paper will appear in International Journal of Innovation Management, special issue in honor of Keith Pavitt, (Peter Augsdoerfer, Jonathan Sapsed, and James Utterback, guest editors), forthcoming. Among Keith Pavitt's many contributions to the study of innovation is the proposition that physical proximity is advantageous for innovative activities that involve highly complex technological knowledge But chip design, a process that creates the greatest value in the electronics industry and that requires highly complex knowledge, is experiencing a massive dispersion to leading Asian electronics exporting countries. To explain why chip design is moving to Asia, the paper draws on interviews with 60 companies and 15 research institutions that are doing leading-edge chip design in Asia. I demonstrate that "pull" and "policy" factors explain what attracts design to particular locations. But to get to the root causes that shift the balance in favor of geographical decentralization, I examine "push" factors, i.e. changes in design methodology ("system-on-chip design") and organization ("vertical specialization" within global design networks). The resultant increase in knowledge mobility explains why chip design - that, in Pavitt's framework is not supposed to move - is moving from the traditional centers to a few new specialized design clusters in Asia. A completely revised and updated version has been published as: " Complexity and Internationalisation of Innovation: Why is Chip Design Moving to Asia?," in International Journal of Innovation Management, special issue in honour of Keith Pavitt, Vol. 9,1: 47-73.
    corecore