1,707 research outputs found

    Performance Evaluation of IPTV over WiMAX Networks Under Different Terrain Environments

    Full text link
    Deployment Video on Demand (VoD) over the next generation (WiMAX) has become one of the intense interest subjects in the research these days, and is expected to be the main revenue generators in the near future. In this paper, the performance of Quilty of Service of video streaming (IPTV) over fixed mobile WiMax network is investigated under different terrain environments, namely Free Space, Outdoor to Indoor and Pedestrian. OPNET is used to investigate the performance of VoD over WiMAX. Our findings analyzing different network statistics such as packet lost, path loss, delay, network throughput.Comment: arXiv admin note: substantial text overlap with arXiv:1302.1409, and substantial text overlap with other internet sources by other author

    Modeling of Packet Streaming Services in Information Communication Networks

    Get PDF
    Application of the term video streaming in contemporary usage denotes compression techniques and data buffering, which can transmit video in real time over the network. There is currently a rapid growth and development of technologies using wireless broadband technology as a transport, which is a seri- ous alternative to cellular communication systems. Adverse effect of the aggressive environment used in wireless networks transmission results in data packets undergoing serious distortions and often get- ting lost in transit. All existing research in this area investigate the known types of errors separately. At present there are no standard approaches to determining the effect of errors on transmission quality of services. Besides, the spate in popularity of multimedia applications has led to the need for optimization of bandwidth allocation and usage in telecommunication networks. Modern telecommunication networks should by their definition be able to maintain the quality of different applications with different Quality of Service (QoS) levels. QoS requirements are generally dependent on the parameters of network and application layers of the OSI model. At the application layer QoS depends on factors such as resolution, bit rate, frame rate, video type, audio codecs, and so on. At the network layer, distortions (such as delay, jitter, packet loss, etc.) are introduced

    Walled gardens: The new shape of the public internet

    Get PDF
    This paper argues that the global public internet is undergoing a long-term transformation from a uniform transmission platform to one in which data reachability will be increasingly compromised by emerging technical, political and commercial choices. This phenomenon is not new. It reflects changes away from the original end-to-end principle as a guiding design concept in internet engineering, as well as in the various forms of IP (internet protocol) filtering exercised by governments and other institutions around the world. The emphasis in this paper, however, is on less controversial developments, especially the growth in managed IP services and deployments of MPLS (multiprotocol label switching). The browser-centric public Web has been giving way to 'apps' and 'walled gardens'

    A Network Algorithm for 3D/2D IPTV Distribution using WiMAX and WLAN Technologies

    Full text link
    The final publication is available at link.springer.comThe appearance of new broadband wireless technologies jointly with the ability to offer enough quality of service to provide IPTV over them, have made possible the mobility and ubiquity of any type of device to access the IPTV network. The minimum bandwidth required in the access network to provide appropriate quality 3D/2D IPTV services jointly with the need to guarantee the Quality of Experience (QoE) to the end user, makes the need of algorithms that should be able to combine different wireless standards and technologies. In this paper, we propose a network algorithm that manages the IPTV access network and decides which type of wireless technology the customers should connect with when using multiband devices, depending on the requirements of the IPTV client device, the available networks, and some network parameters (such as the number of loss packets and packet delay), to provide the maximum QoE to the customer. The measurements taken in a real environment from several wireless networks allow us to know the performance of the proposed system when it selects each one of them. The measurements taken from a test bench demonstrate the success of our system.This work has been partially supported by the Polytechnic University of Valencia, though the PAID-15-10 multidisciplinary projects, by the Instituto de Telecomunicacoes, Next Generation Networks and Applications Group (NetGNA), Portugal, and by National Funding from the FCT - Fundacao para a Ciencia e a Tecnologia through the PEst-OE/EEI/LA0008/2011 Project.Lloret, J.; Cánovas Solbes, A.; Rodrigues, JJPC.; Lin, K. (2013). A Network Algorithm for 3D/2D IPTV Distribution using WiMAX and WLAN Technologies. Multimedia Tools and Applications. 67(1):7-30. https://doi.org/10.1007/s11042-011-0929-4S730671Abukharis S, MacKenzie R, Farrell TO (2009) Improving QoS of Video Transmitted Over 802.11 WLANs Using Frame Aggregation. London Communications Symposium.. London, United Kingdom, September 03–04Alejandro Canovas, Fernando Boronat, Carlos Turro and Jaime Lloret (2009) Multicast TV over WLAN in a University Campus Network, The Fifth International Conference on Networking and Services (ICNS 2009), Valencia (Spain), April 20–25Alfonsi B (2005) “I want my IPTV: Internet Protocol television predicted a winner,” IEEE Distributed Systems Online, vol.6, no.2Birlik F, Gurbuz Ö, Ercetin O (2009) IPTV Home Networking via 802.11 Wireless Mesh Networks: An Implementation Experience. IEEE Trans. on Consumer Electronics, Vol. 55, No. 3Cai LX, Ling X, Shen X, Mark JW, Cai L (2009) Supporting voice and video applications over IEEE 802.11n WLANs. Wireless Networks 15:443–454Cunningham G, Perry P, Murphy J, Murphy L (2009) Seamless Handover of IPTV Streams in a Wireless LAN Network. Transactions on Broadcasting, IEEE 55(4):796–801Dai Z, Fracchia R, Gosteau J, Pellati P, Vivier G (2008) Vertical Handover Criteria and Algorithm in IEEE802.11 and 802.16 Hybrid Networks, IEEE International Conference on Communications, 2008. ICC’08. Beijing, China, 19–23Gidlund M, Ekling J (2008) VoIP and IPTV distribution over wireless mesh networks in indoor environment. IEEE Trans Consum Electron 54(4):1665–1671Hellberg C, Greene D, Boyes T (2007) Broadband network architectures: designing and deploying triple-play services. Prentice Hall PTR Upper Saddle River, NJ, USAHsu H-T, Kuo F-Y, Lu P-H (2010) Design of WiFi/WiMAX dual-band E-shaped patch antennas through cavity model approach. Microw Opt Technol Lett 52(2):471–474IEEE 802.11 Working Group, At http://www.ieee802.org/11/index.shtml [last access: July 2011]IEEE Std 802.11™-2007 - IEEE Standard for Information Technology— Telecommunications and information exchange between systems— Local and metropolitan area networks—Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) SpecificationsIEEE Std 802.16™-2009, IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface for Broadband Wireless Access Systems. At http://standards.ieee.org/getieee802/download/802.16-2009.pdf [last access: July 2011]inCode Telecom group Inc. (2006) The Quad-Play—the First Wave of the Converged Services Evolution. White paper, FebruaryIPTV Focus Group, Available at http://www.itu.int/ITU-T/IPTV/ [last access: July 2011]Jindal S, Jindal A, Gupta N (2005) Grouping WI-MAX, 3 G and WI-FI for wireless broadband, The First IEEE and IFIP International Conference in Central Asia on Internet 2005, September 26–29, Bishkek, KyrgyzstanJin-Yu Zhang, Man-Gui Liang (2008) “IPTV QoS Implement Mechanism in WLAN,” Int. Conference on Intelligent Information Hiding and Multimedia Signal Processing. pp 117-120, 15–17Karen Fernanda Medina Velez and Ivonne Alexandra Revelo Arias (2006) Diseño y planificación de una red inalámbrica basada en los estandares IEEE 802.16 (WIMAX) y 802.11 (WIFI) para proveer de internet de banda ancha a poblaciones de las provincias de Loja y Zamora Chinchipe, Tesis Electrónica y Telecomunicaciones (IET), Escuela Politécnica Nacional, Quito, EcuadorKnightson K, Morita N, Towle T (2005) NGN architecture: generic principles, functional architecture, and implementation. IEEE Commun Mag 43(10):49–56Lai C, Min Chen (2011) Playback-Rate Based Streaming Services for Maximum Network Capacity in IP Multimedia Subsystem, IEEE System Journal, doi: 10.1109/JSYST.2011.2165190Lee K-H, Trong ST, Lee B-G, Kim Y-T (2008) QoS-Guaranteed IPTV Service Provisioning in Home Network with IEEE 802.11e Wireless LAN,” IEEE Network Operations and Management Symposium. pp 71-76Marcelo Atenas, Sandra Sendra, Miguel Garcia, Jaime Lloret (2010) IPTV Performance in IEEE 802.11n WLANs, IEEE Global Communications Conference (IEEE Globecomm 2010), Miami (USA), December 6–10Miguel Garcia, Jaime Lloret, Miguel Edo, Raquel Lacuesta (2009) IPTV Distribution Network Access System Using WiMAX and WLAN Technologies, International Symposium on High Performance Distributed Computing (HPDC 2009), Munich (Germany), June 11–13Park AH, Choi JK (2007) “QoS guaranteed IPTV service over Wireless Broadband network”, The 9th Int. Conference on Advanced Communication Technology 2:1077–1080Retnasothie FE, Ozdemir MK, YÄucek T, Zhang J, Celebi H, Muththaiah R (2006) “Wireless IPTV over WiMAX: Challenges and applications”. IEEE Wamicon, Clearwater, FLSchollmeier G, Winkler C (2004) Providing sustainable QoS in next-generation networks. IEEE Communication Magazine 42(6):102–107She J, Hou F, Ho P-H, Xie L-L (2007) IPTV over WiMAX: Key Success Factors, Challenges, and Solutions [Advances in Mobile Multimedia]. IEEE Commun Mag 45(8):87–93Shihab E, Cai L, Wan F, Gulliver TA, Tin N (2008) Wireless mesh networks for in-home IPTV distribution. IEEE Netw 22(1):52–57Shihab E, Wan F, Cai L, Gulliver A, Tin N (2007) “Performance Analysis of IPTV in Home Networks”, IEEE Global Telecommunications (GLOBECOM 2007), Washington, DC, pp 26–30Singh H, ChangYeul Kvvon, Seong Soo Kim, Chiu Ngo (2008) “IPTV over WirelessLAN: Promises and Challenges,” 5th IEEE Consumer Communications and Networking Conference, pp.626-631Super AG technologies, At http://www.digicom.it/italiano/supporto/WhitePaper/Wireless108M_whitepaper.pdf [last access: July 2011]VLC Media Player, Available at www.videolan.org [last access: July 2011]Wen-Hsing Kuo, Tehuang Liu, Wanjiun Liao (2007) Utility-Based Resource Allocation for Layer-Encoded IPTV Multicast in IEEE 802.16 (WiMAX) Wireless Networks. IEEE International Conference on Communications 2007 (ICC 2007), 24–28. Glasgow, Scotland pp 1754-1759Wireshark Network Protocol Analyzer, Available at www.wireshark.org [last access: July 2011]Xiao Y, Du X, Zhang J, Hu F, Guizani S (2007) Internet protocol television (IPTV): the killer application for the next-generation internet. IEEE Commun Mag 45(11):126–134Yarali A, Rahman S, Mbula B (2008) WIMAX: The innovate Broadband Wireless access technology. Journal of Communications 3(2):53–6
    • …
    corecore