68 research outputs found

    New Solution of Abstract Architecture for Control and Coordination Decentralized Systems

    Get PDF
    This paper contains a new approach that combines the advantages and disadvantages of suppressing hierarchical and heterarchical control architectures, creating a semi-heterarchical (holonic) control architecture. The degree of subordinate unit autonomy changes dynamically, depending on the presence of a system disruption, and its scope allows for a smooth transition from hierarchical to heterarchic control architecture in subordinate units. We have proposed a representation of the dynamic degree of autonomy and its possible application to subordinate units, which are, in our case, one-directional Automated Guided Vehicles (AGVs) and are guided by magnetic tape. In order to achieve such a semi-heterarchic management architecture with a dynamic degree of autonomy, approaches such as smart product, stymergic (indirect) communication, or basic principles of holon approach have been implemented

    Collaborative Systems, Operation and Task of the Manufacturing Execution Systems in the 21st Century Industry

    Get PDF
    Until the first two decades of the 21st century, as part of the Enterprise Resourse Planning (ERP), the Manufacturing Execution System (MES) and related systems have undergone development in both complexity and efficiency. In the field of production technology, there are many sources of work nowadays to get a detailed picture of the solutions offered by MES. The purpose of this article is to give a comprehensive overview of the MES solutions that currently used in industry. In addition to the general structure of the systems and Holonic MES are briefly described. Special attencion is paid to various collaborative systems that complement the MES. The additional manufacturing tools for MES is also described shematically in this article

    A systems approach to manufacturing science

    Get PDF

    Describing Structure and Complex Interactions in Multi-Agent-Based Industrial Cyber-Physical Systems

    Get PDF
    The description of structure and complex interactions in Multi-agent-based Industrial Cyber-physical (MAS-ICPS) systems has been elusively addressed in the literature. Existing works, grounded on model-based engineering, have been successful at characterizing and solving system integration problems. However, they fail to describe accurately the collective and dynamic execution behaviour of large and complex industrial systems, particularly in more discrete production domains, such as: automotive, home appliances, aerospace, food and beverages, etc. In these domains, the execution flow diverts dynamically due to production disturbances, custom orders, fluctuations in demand in mixed model production, faults, quality-control and product rework, etc. These dynamic conditions require re-allocation and reconfiguration of production resources, redirection of production flows, re-scheduling of orders, etc. A meta-model for describing the structure and complex interactions in MAS-ICPS is defined in this paper. This contribution goes beyond the State-Of-The-Art (SOTA) as the proposed meta-model describes structure, as many other literature contributions, but also describes the execution behaviour of arbitrarily complex interactions. The previous is achieved with the introduction of general execution flow control operators in the meta-model. These operators cover, among other aspects, delegation of the execution flow and dynamic decision making. Additionally, the contribution also goes beyond the SOTA by including validation mechanisms for the models generated by the meta-model. Finally, the contribution adds to the current literature by providing a meta-model focusing on production execution and not just on describing the structural connectivity aspects of ICPSs.publishersversionpublishe

    Pollux: a dynamic hybrid control architecture for flexible job shop systems

    Get PDF
    Nowadays, manufacturing control systems can respond more effectively to exigent market requirements and real-time demands. Indeed, they take advantage of changing their structural and behavioural arrangements to tailor the control solution from a diverse set of feasible configurations. However, the challenge of this approach is to determine efficient mechanisms that dynamically optimise the configuration between different architectures. This paper presents a dynamic hybrid control architecture that integrates a switching mechanism to control changes at both structural and behavioural level. The switching mechanism is based on a genetic algorithm and strives to find the most suitable operating mode of the architecture with regard to optimality and reactivity. The proposed approach was tested in a real flexible job shop to demonstrate the applicability and efficiency of including an optimisation algorithm in the switching process of a dynamic hybrid control architecture.This work was supported by the Colombian scholarship programme of department of science – COLCIENCIAS under grant ‘Convocatoria 568 – Doctorados en el exterior’ and the Pontificia Universidad Javeriana under grant ‘Programa de Formacion de posgrados del Profesor Javeriano’.info:eu-repo/semantics/publishedVersio

    A nervousness regulator framework for dynamic hybrid control architectures

    Get PDF
    Dynamic hybrid control architectures are a powerful paradigm that addresses the challenges of achieving both performance optimality and operations reactivity in discrete systems. This approach presents a dynamic mechanism that changes the control solution subject to continuous environment changes. However, these changes might cause nervousness behaviour and the system might fail to reach a stabilized-state. This paper proposes a framework of a nervousness regulator that handles the nervousness behaviour based on the defined nervousness-state. An example of this regulator mechanism is applied to an emulation of a flexible manufacturing system located at the University of Valenciennes. The results show the need for a nervousness mechanism in dynamic hybrid control architectures and explore the idea of setting the regulator mechanism according to the nervousness behaviour state.info:eu-repo/semantics/publishedVersio

    Process control and configuration of a reconfigurable production system using a multi-agent software system

    Get PDF
    Thesis (M. Tech. (Information Technology)) -- Central University of technology, Free State, 2011Traditional designs for component-handling platforms are rigidly linked to the product being produced. Control and monitoring methods for these platforms consist of various proprietary hardware controllers containing the control logic for the production process. Should the configuration of the component handling platform change, the controllers need to be taken offline and reprogrammed to take the changes into account. The current thinking in component-handling system design is the notion of re-configurability. Reconfigurability means that with minimum or no downtime the system can be adapted to produce another product type or overcome a device failure. The re-configurable component handling platform is built-up from groups of independent devices. These groups or cells are each responsible for some aspect of the overall production process. By moving or swopping different versions of these cells within the component-handling platform, re-configurability is achieved. Such a dynamic system requires a flexible communications platform and high-level software control architecture to accommodate the reconfigurable nature of the system. This work represents the design and testing of the core of a re-configurable production control software platform. Multiple software components work together to control and monitor a re-configurable component handling platform. The design and implementation of a production database, production ontology, communications architecture and the core multi-agent control application linking all these components together is presented

    An approach for characterizing the operating modes in dynamic hybrid control architectures

    Get PDF
    Nowadays, manufacturing control system faces the challenge of featuring optimal and reactive mechanisms to respond to volatile environments. In automation domain, hybrid control architectures solve these requirements as it allows coupling predictive/proactive and reactive techniques in manufacturing operations. However, to include dynamic coupling features, it is necessary to characterize the possible new operating modes and visualize its potential when a switching is needed. This paper presents an approach to characterize the operating modes of dynamic hybrid control architectures to support the dynamic switching process. The results, obtained through a simulation in a multi agent platform of flexible manufacturing systems, showed the interest of our approach in terms of including the characterization of operating modes as decisional criteria towards a system switching.info:eu-repo/semantics/publishedVersio

    Agent-based material transportation scheduling of AGV systems and its manufacturing applications

    Get PDF
    制度:新 ; 報告番号:甲3743号 ; 学位の種類:博士(工学) ; 授与年月日:2012/9/10 ; 早大学位記番号:新6114Waseda Universit
    corecore