924,548 research outputs found

    Models in the Cloud: Exploring Next Generation Environmental Software Systems

    Get PDF
    There is growing interest in the application of the latest trends in computing and data science methods to improve environmental science. However we found the penetration of best practice from computing domains such as software engineering and cloud computing into supporting every day environmental science to be poor. We take from this work a real need to re-evaluate the complexity of software tools and bring these to the right level of abstraction for environmental scientists to be able to leverage the latest developments in computing. In the Models in the Cloud project, we look at the role of model driven engineering, software frameworks and cloud computing in achieving this abstraction. As a case study we deployed a complex weather model to the cloud and developed a collaborative notebook interface for orchestrating the deployment and analysis of results. We navigate relatively poor support for complex high performance computing in the cloud to develop abstractions from complexity in cloud deployment and model configuration. We found great potential in cloud computing to transform science by enabling models to leverage elastic, flexible computing infrastructure and support new ways to deliver collaborative and open science

    Designing Institutional Infrastructure for E-Science

    Get PDF
    A new generation of information and communication infrastructures, including advanced Internet computing and Grid technologies, promises more direct and shared access to more widely distributed computing resources than was previously possible. Scientific and technological collaboration, consequently, is more and more dependent upon access to, and sharing of digital research data. Thus, the U.S. NSF Directorate committed in 2005 to a major research funding initiative, “Cyberinfrastructure Vision for 21st Century Discovery”. These investments are aimed at enhancement of computer and network technologies, and the training of researchers. Animated by much the same view, the UK e-Science Core Programme has preceded the NSF effort in funding development of an array of open standard middleware platforms, intended to support Grid enabled science and engineering research. This proceeds from the sceptical view that engineering breakthroughs alone will not be enough to achieve the outcomes envisaged. Success in realizing the potential of e-Science—through the collaborative activities supported by the "cyberinfrastructure," if it is to be achieved, will be the result of a nexus of interrelated social, legal, and technical transformations.e-science, cyberinfrastructure, information sharing, research

    A précis of philosophy of computing and information technology

    Get PDF
    The authors recently finished a comprehensive chapter on “Philosophy of Computing and Information Technology” for the forthcoming (fall 2009) Philosophy of Technology and Engineering Sciences (Ed.: A. Meijers), Volume IX in the Elsevier series Handbook of the Philosophy of Science (Eds.: D. Gabbay, P. Thagard and J. Woods). The purpose of the chapter is to review and discuss the main developments, concepts, topics, and contributors in the intersection between philosophy and computing, as well as provide some suggestions on how to structure the many subcategories within what is loosely referred to as philosophy of computing. In this short synopsis, we will give an outline of the kinds of issues raised in this chapter

    Junkbots

    Get PDF
    The School of Science and Technology at the University of Northampton have been working with local schools to create robots made from junk and also to use robots programmed by the students to perform simple rubbish clearing exercises. This is an initiative by the University to introduce environmental sustainability, engineering and computing to students in school

    Density-Matrix Algorithm for Phonon Hilbert Space Reduction in the Numerical Diagonalization of Quantum Many-Body Systems

    Full text link
    Combining density-matrix and Lanczos algorithms we propose a new optimized phonon approach for finite-cluster diagonalizations of interacting electron-phonon systems. To illustrate the efficiency and reliability of our method, we investigate the problem of bipolaron band formation in the extended Holstein Hubbard model.Comment: 14 pages, 6 figures, Workshop on High Performance Computing in Science and Engineering, Stuttgart 200

    Lattice QCD Application Development within the US DOE Exascale Computing Project

    Full text link
    In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020's. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with significant collaborators abroad are developing algorithms and software for exascale lattice QCD calculations. We give a short description of the project, our activities, and our plans.Comment: 35th International Symposium on Lattice Field Theory (Lattice 2017
    corecore