162,117 research outputs found

    CORBA-JS: An Open-Standards Framework for Distributed Object Computing over the Web

    Get PDF
    poster abstractDistributed object computing (DOC) is a well-established software engineering paradigm for implementing distributed real-time and embedded (DRE) systems, such as real-time monitoring systems. Likewise, CORBA is a well-established DOC open-standard used in DRE systems. Due to many technological limitations, DOC was traditionally unavailable in Web-based applications (i.e., stateful applications that communicate over HTTP, and are accessible via a Web browser) without the use of proprietary, custom technologies. The problem with using proprietary, custom technology is it creates fragmentation in the solution space where some solutions are not available to all end-users (e.g., Web sites that only work within a certain Web browser because of the used technology). With the advent of HTML5 and WebSockets, which is an open-standard for enabling two-way communication over HTTP, DOC now has the necessary technological foundations to be realized within Web applications without the use of proprietary, custom technologies. To date, however, no researchers have attempted to apply DOC over HTTP using well-established DOC open-standards, such as CORBA. This research therefore is an initial investigation into implementing CORBA atop of HTML5 and WebSockets. As part of this research, we are investigating the challenges in realizing the solution, and proposing ways to improve the target programming languages and CORBA specification. Doing so will enable developers to create feature-rich real-time Web applications that improve upon current state-of-the-art approaches, e.g., Asynchronous XML and JavaScript (AJAX), that are resource intensive (e.g., use a lot of CPU, network bandwidth, and memory) and hard to program

    Remote Controlling and Monitoring of Safety Devices Using Web-Interface Embedded Systems

    Get PDF
    To date, access control systems have been hardware-based platforms, where software and hardware parts were uncoupled into different systems. The Department of Electronic Technology in the University of Seville, together with ISIS Engineering, have developed an innovative embedded system that provides all needed functions for controlling and monitoring remote access control systems through a built-in web interface. The design provides a monolithic structure, independence from outer systems, easiness in management and maintenance, conformation to the highest standards in security, and straightforward adaptability to applications other than the original one. We have accomplished it by using an extremely reduced Linux kernel and developing web and purpose- specific logic under software technologies with an optimal resource use.Ministerio de Ciencia y TecnologĂ­a TEC2006-0843

    Federated Embedded Systems – a review of the literature in related fields

    Get PDF
    This report is concerned with the vision of smart interconnected objects, a vision that has attracted much attention lately. In this paper, embedded, interconnected, open, and heterogeneous control systems are in focus, formally referred to as Federated Embedded Systems. To place FES into a context, a review of some related research directions is presented. This review includes such concepts as systems of systems, cyber-physical systems, ubiquitous computing, internet of things, and multi-agent systems. Interestingly, the reviewed fields seem to overlap with each other in an increasing number of ways

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Interaction platform-orientated perspective in designing novel applications

    Get PDF
    The lack of HCI offerings in the invention of novel software applications and the bias of design knowledge towards desktop GUI make it difficult for us to design for novel scenarios and applications that leverage emerging computational technologies. These include new media platforms such as mobiles, interactive TV, tabletops and large multi-touch walls on which many of our future applications will operate. We argue that novel application design should come not from user-centred requirements engineering as in developing a conventional application, but from understanding the interaction characteristics of the new platforms. Ensuring general usability for a particular interaction platform without rigorously specifying envisaged usage contexts helps us to design an artifact that does not restrict the possible application contexts and yet is usable enough to help brainstorm its more exact place for future exploitation

    Evaluating XMPP Communication in IEC 61499-based Distributed Energy Applications

    Full text link
    The IEC 61499 reference model provides an international standard developed specifically for supporting the creation of distributed event-based automation systems. Functionality is abstracted into function blocks which can be coded graphically as well as via a text-based method. As one of the design goals was the ability to support distributed control applications, communication plays a central role in the IEC 61499 specification. In order to enable the deployment of functionality to distributed platforms, these platforms need to exchange data in a variety of protocols. IEC 61499 realizes the support of these protocols via "Service Interface Function Blocks" (SIFBs). In the context of smart grids and energy applications, IEC 61499 could play an important role, as these applications require coordinating several distributed control logics. Yet, the support of grid-related protocols is a pre-condition for a wide-spread utilization of IEC 61499. The eXtensible Messaging and Presence Protocol (XMPP) on the other hand is a well-established protocol for messaging, which has recently been adopted for smart grid communication. Thus, SIFBs for XMPP facilitate distributed control applications, which use XMPP for exchanging all control relevant data, being realized with the help of IEC 61499. This paper introduces the idea of integrating XMPP into SIFBs, demonstrates the prototypical implementation in an open source IEC 61499 platform and provides an evaluation of the feasibility of the result.Comment: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA
    • 

    corecore