1,756 research outputs found

    Some Issues on Ontology Integration

    Get PDF
    The word integration has been used with different meanings in the ontology field. This article aims at clarifying the meaning of the word “integration” and presenting some of the relevant work done in integration. We identify three meanings of ontology “integration”: when building a new ontology reusing (by assembling, extending, specializing or adapting) other ontologies already available; when building an ontology by merging several ontologies into a single one that unifies all of them; when building an application using one or more ontologies. We discuss the different meanings of “integration”, identify the main characteristics of the three different processes and proposethree words to distinguish among those meanings:integration, merge and use

    Social and Semantic Web Technologies for the Text-To-Knowledge Translation Process in Biomedicine

    Get PDF
    Currently, biomedical research critically depends on knowledge availability for flexible re-analysis and integrative post-processing. The voluminous biological data already stored in databases, put together with the abundant molecular data resulting from the rapid adoption of high-throughput techniques, have shown the potential to generate new biomedical discovery through integration with knowledge from the scientific literature. Reliable information extraction applications have been a long-sought goal of the biomedical text mining community. Both named entity recognition and conceptual analysis are needed in order to map the objects and concepts represented by natural language texts into a rigorous encoding, with direct links to online resources that explicitly expose those concepts semantics (see Figure 1).P08-TIC-4299 of J. ASevilla and TIN2009-13489 of DGICT, Madri

    tiphys an open networked platform for higher education on industry 4 0

    Get PDF
    Abstract Objective of Tiphys project is building an Open Networked Platform for the learning of Industry 4.0 themes. The project will create a Virtual Reality (VR) platform, where users will be able to design and create a VR based environment for training and simulating industrial processes but they will be able to study and select among a set of models in order to standardize the learning and physical processes as a virtual representation of the real industrial world and the required interactions so that to acquire learning and training capabilities. The models will be structured in a modular approach to promote the integration in the existing mechanisms as well as for future necessary adaptations. The students will be able to co-create their learning track and the learning contents by collaborative working in a dynamic environment. The paper presents the development and validation of the learning model, built on CONALI learning ontology. The concepts of the ontology will be detailed and the platform functions will be demonstrated on selected use cases

    Ontologies for Neuroscience: What are they and What are they Good for?

    Get PDF
    Current information technology practices in neuroscience make it difficult to understand the organization of the brain across spatial scales. Subcellular junctional connectivity, cytoarchitectural local connectivity, and long-range topographical connectivity are just a few of the relevant data domains that must be synthesized in order to make sense of the brain. However, due to the heterogeneity of the data produced within these domains, the landscape of multiscale neuroscience data is fragmented. A standard framework for neuroscience data is needed to bridge existing digital data resources and to help in the conceptual unification of the multiple disciplines of neuroscience. Using our efforts in building ontologies for neuroscience as an example, we examine the benefits and limits of ontologies as a solution for this data integration problem. We provide several examples of their application to problems of image annotation, content-based retrieval of structural data, and integration of data across scales and researchers

    A Hierarchical Core Reference Ontology for New Technology Insertion Design in Long Life Cycle, Complex Mission Critical Systems

    Get PDF
    Organizations, including government, commercial and others, face numerous challenges in maintaining and upgrading long life-cycle, complex, mission critical systems. Maintaining and upgrading these systems requires the insertion and integration of new technology to avoid obsolescence of hardware software, and human skills, to improve performance, to maintain and improve security, and to extend useful life. This is particularly true of information technology (IT) intensive systems. The lack of a coherent body of knowledge to organize new technology insertion theory and practice is a significant contributor to this difficulty. This research organized the existing design, technology road mapping, obsolescence, and sustainability literature into an ontology of theory and application as the foundation for a technology design and technology insertion design hierarchical core reference ontology and laid the foundation for body of knowledge that better integrates the new technology insertion problem into the technology design architecture

    From conceptual design to process design optimization: a review on flowsheet synthesis

    Get PDF
    International audienceThis paper presents the authors’ perspectives on some of the open questions and opportunities in Process Systems Engineering (PSE) focusing on process synthesis. A general overview of process synthesis is given, and the difference between Conceptual Design (CD) and Process Design (PD) is presented using an original ternary diagram. Then, a bibliometric analysis is performed to place major research team activities in the latter. An analysis of ongoing work is conducted and some perspectives are provided based on the analysis. This analysis includes symbolic knowledge representation concepts and inference techniques, i.e., ontology, that is believed to become useful in the future. Future research challenges that process synthesis will have to face, such as biomass transformation, shale production, response to spaceflight demand, modular plant design, and intermittent production of energy, are also discussed
    • 

    corecore