1,719 research outputs found

    Engineering Planar-Separator and Shortest-Path Algorithms

    Get PDF
    "Algorithm engineering" denotes the process of designing, implementing, testing, analyzing, and refining computational proceedings to improve their performance. We consider three graph problems -- planar separation, single-pair shortest-path routing, and multimodal shortest-path routing -- and conduct a systematic study in order to: classify different kinds of input; draw concrete recommendations for choosing the parameters involved; and identify and tune crucial parts of the algorithm

    Coalition structure generation over graphs

    No full text
    We give the analysis of the computational complexity of coalition structure generation over graphs. Given an undirected graph G = (N,E) and a valuation function v : P(N) β†’ R over the subsets of nodes, the problem is to find a partition of N into connected subsets, that maximises the sum of the components values. This problem is generally NP-complete; in particular, it is hard for a defined class of valuation functions which are independent of disconnected members β€” that is, two nodes have no effect on each others marginal contribution to their vertex separator. Nonetheless, for all such functions we provide bounds on the complexity of coalition structure generation over general and minor free graphs. Our proof is constructive and yields algorithms for solving corresponding instances of the problem. Furthermore, we derive linear time bounds for graphs of bounded treewidth. However, as we show, the problem remains NP-complete for planar graphs, and hence, for any Kk minor free graphs where k β‰₯ 5. Moreover, a 3-SAT problem with m clauses can be represented by a coalition structure generation problem over a planar graph with O(m2) nodes. Importantly, our hardness result holds for a particular subclass of valuation functions, termed edge sum, where the value of each subset of nodes is simply determined by the sum of given weights of the edges in the induced subgraph
    • …
    corecore