27,884 research outputs found

    Engineering methods and tools for cyber–physical automation systems

    Get PDF
    Much has been published about potential benefits of the adoption of cyber–physical systems (CPSs) in manufacturing industry. However, less has been said about how such automation systems might be effectively configured and supported through their lifecycles and how application modeling, visualization, and reuse of such systems might be best achieved. It is vitally important to be able to incorporate support for engineering best practice while at the same time exploiting the potential that CPS has to offer in an automation systems setting. This paper considers the industrial context for the engineering of CPS. It reviews engineering approaches that have been proposed or adopted to date including Industry 4.0 and provides examples of engineering methods and tools that are currently available. The paper then focuses on the CPS engineering toolset being developed by the Automation Systems Group (ASG) in the Warwick Manufacturing Group (WMG), University of Warwick, Coventry, U.K. and explains via an industrial case study how such a component-based engineering toolset can support an integrated approach to the virtual and physical engineering of automation systems through their lifecycle via a method that enables multiple vendors' equipment to be effectively integrated and provides support for the specification, validation, and use of such systems across the supply chain, e.g., between end users and system integrators

    Cyber-Virtual Systems: Simulation, Validation & Visualization

    Full text link
    We describe our ongoing work and view on simulation, validation and visualization of cyber-physical systems in industrial automation during development, operation and maintenance. System models may represent an existing physical part - for example an existing robot installation - and a software simulated part - for example a possible future extension. We call such systems cyber-virtual systems. In this paper, we present the existing VITELab infrastructure for visualization tasks in industrial automation. The new methodology for simulation and validation motivated in this paper integrates this infrastructure. We are targeting scenarios, where industrial sites which may be in remote locations are modeled and visualized from different sites anywhere in the world. Complementing the visualization work, here, we are also concentrating on software modeling challenges related to cyber-virtual systems and simulation, testing, validation and verification techniques for them. Software models of industrial sites require behavioural models of the components of the industrial sites such as models for tools, robots, workpieces and other machinery as well as communication and sensor facilities. Furthermore, collaboration between sites is an important goal of our work.Comment: Preprint, 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2014

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Active learning based laboratory towards engineering education 4.0

    Get PDF
    Universities have a relevant and essential key role to ensure knowledge and development of competencies in the current fourth industrial revolution called Industry 4.0. The Industry 4.0 promotes a set of digital technologies to allow the convergence between the information technology and the operation technology towards smarter factories. Under such new framework, multiple initiatives are being carried out worldwide as response of such evolution, particularly, from the engineering education point of view. In this regard, this paper introduces the initiative that is being carried out at the Technical University of Catalonia, Spain, called Industry 4.0 Technologies Laboratory, I4Tech Lab. The I4Tech laboratory represents a technological environment for the academic, research and industrial promotion of related technologies. First, in this work, some of the main aspects considered in the definition of the so called engineering education 4.0 are discussed. Next, the proposed laboratory architecture, objectives as well as considered technologies are explained. Finally, the basis of the proposed academic method supported by an active learning approach is presented.Postprint (published version
    corecore