41,374 research outputs found

    Genuine lab experiences for students in resource constrained environments: The RealLab with integrated intelligent assessment.

    Get PDF
    Laboratory activities are indispensable for developing engineering skills. Computer Aided Learning (CAL) tools can be used to enhance laboratory learning in various ways, the latest approach being the virtual laboratory technique that emulates traditional laboratory processes. This new approach makes it possible to give students complete and genuine laboratory experiences in situations constrained by limited resources in the provision of laboratory facilities and infrastructure and/or where there is need for laboratory education, for large classes, with only one laboratory stand. This may especially be the case in countries in transition. Most existing virtual laboratories are not available for purchase. Where they are, they may not be cost friendly for resource constrained environments. Also, most do not integrate any form of assessment structure. In this paper, we present a very cost friendly virtual laboratory solution for genuine laboratory experiences in resource constrained environments, with integrated intelligent assessment

    GAELS Project Final Report: Information environment for engineering

    Get PDF
    The GAELS project was a collaboration commenced in 1999 between Glasgow University Library and Strathclyde University Library with two main aims:· to develop collaborative information services in support of engineering research at the Universities of Glasgow and Strathclyde· to develop a CAL (computer-aided learning package) package in advanced information skills for engineering research students and staff The project was funded by the Scottish Higher Education Funding Council (SHEFC) from their Strategic Change Initiative funding stream, and funding was awarded initially for one year, with an extension of the grant for a further year. The project ended in June 2001.The funding from SHEFC paid for two research assistants, one based at Glasgow University Library working on collaborative information services and one based at Strathclyde University Library developing courseware. Latterly, after these two research assistants left to take up other posts, there has been a single researcher based at Glasgow University Library.The project was funded to investigate the feasibility of new services to the Engineering Faculties at both Universities, with a view to making recommendations for service provision that can be developed for other subject areas

    Distance Education in Engineering for Developing Countries

    Get PDF
    Teaching/Communication/Extension/Profession,

    Aerospace bibliography, fifth edition

    Get PDF
    Bibliography of references, periodicals, and educational materials related to space fligh

    Experiences with mechatronics education at the University of Twente

    Get PDF
    This paper describes the experiences with a number of variants of mechatronic programmes offered by the University of Twente since 1989. Mechatronics education took place in a two-year mechatronic designer programme, in specialisations in Electrical and Mechanical Engineering and in an international MSc programme. In the new European BSc/MSc structure the University of Twente will offer an MSc mechatronics where the course language will be English. There have been large mechatronic projects, where 4 PhD and some 50 MSc students did their thesis work as well as two-week mechatronic projects in the BSc curricula of EE and ME. The latter show that mechatronics is not only a topic of interest for students who want to specialise in this direction, but that mechatronic projects also offer a challenge for electrical and mechanical engineering students in general

    Engineering - what's that?

    Get PDF
    Engineering the Future (EtF) aims to develop a sustainable model of activities and interactions among researchers, policy makers and practitioners that develops pupils’ understanding of the nature of engineering, embeds experiences of engineering within the school classroom and curriculum and promotes engineering as a career.One barrier to young people entering engineering is inadequate awareness of the nature ofengineering and its diverse career paths. Many pupils in the participating schools had no awareness of engineering or very limited awareness. 65% had never considered engineering as a career choice.1st year electronic and electrial engineering students at the universities of Strathclyde and Glasgow identified family links as a key factor in encouraging them to study engineering. They also traced interest in engineering to particular school classroom experiences. Discussions with careers guidance staff revealed that careers guidance is almost entirely responsive to pupil requests: only occasionally will pupils who are good at science and mathematics be directed towards engineering.The current situation leaves almost all school pupils uninformed about the nature of engineering.The paper describes how the EtF project seeks to redress the situation by developing classroom engineering experiences, working to embed engineering formally in the curriculum and providing resources for active careers advice

    Training Competences in Industrial Risk Prevention with Lego® Serious Play®: A Case Study

    Get PDF
    This paper proposes the use of the Lego® Serious Play® (LSP) methodology as a facilitating tool for the introduction of competences for Industrial Risk Prevention by engineering students from the industrial branch (electrical, electronic, mechanical and technological engineering), presenting the results obtained in the Universities of Cadiz and Seville in the academic years 2017–2019. Current Spanish legislation does not reserve any special legal attribution, nor does it require specific competence in occupational risk prevention for the regulated profession of a technical industrial engineer (Order CIN 351:2009), and only does so in a generic way for that of an industrial engineer (Order CIN 311:2009). However, these universities consider the training in occupational health and safety for these future graduates as an essential objective in order to develop them for their careers in the industry. The approach is based on a series of challenges proposed (risk assessments, safety inspections, accident investigations and fire protection measures, among others), thanks to the use of “gamification” dynamics with Lego® Serious Play®. In order to carry the training out, a set of specific variables (industrial sector, legal and regulatory framework, business organization and production system), and transversal ones (leadership, teamwork, critical thinking and communication), are incorporated. Through group models, it is possible to identify dangerous situations, establish causes, share and discuss alternative proposals and analyze the economic, environmental and organizational impact of the technical solutions studied, as well as take the appropriate decisions, in a creative, stimulating, inclusive and innovative context. In this way, the theoretical knowledge which is acquired is applied to improve safety and health at work and foster the prevention of occupational risks, promoting the commitment, effort, motivation and proactive participation of the student teams.Spanish Ministry of Science, Innovation and Universities / European Social Fund: Ramón y Cajal contract (RYC-2017-22222

    Training Competences in Industrial Risk Prevention with Lego (R) Serious Play (R): A Case Study

    Get PDF
    This paper proposes the use of the Lego (R) Serious Play (R) (LSP) methodology as a facilitating tool for the introduction of competences for Industrial Risk Prevention by engineering students from the industrial branch (electrical, electronic, mechanical and technological engineering), presenting the results obtained in the Universities of Cadiz and Seville in the academic years 2017-2019. Current Spanish legislation does not reserve any special legal attribution, nor does it require specific competence in occupational risk prevention for the regulated profession of a technical industrial engineer (Order CIN 351:2009), and only does so in a generic way for that of an industrial engineer (Order CIN 311:2009). However, these universities consider the training in occupational health and safety for these future graduates as an essential objective in order to develop them for their careers in the industry. The approach is based on a series of challenges proposed (risk assessments, safety inspections, accident investigations and fire protection measures, among others), thanks to the use of "gamification" dynamics with Lego (R) Serious Play (R). In order to carry the training out, a set of specific variables (industrial sector, legal and regulatory framework, business organization and production system), and transversal ones (leadership, teamwork, critical thinking and communication), are incorporated. Through group models, it is possible to identify dangerous situations, establish causes, share and discuss alternative proposals and analyze the economic, environmental and organizational impact of the technical solutions studied, as well as take the appropriate decisions, in a creative, stimulating, inclusive and innovative context. In this way, the theoretical knowledge which is acquired is applied to improve safety and health at work and foster the prevention of occupational risks, promoting the commitment, effort, motivation and proactive participation of the student teams

    SciTech News Volume 71, No. 2 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division 9 Aerospace Section of the Engineering Division 12 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 14 Reviews Sci-Tech Book News Reviews 16 Advertisements IEEE

    Інноваційні моделі навчання і підготовки кадрів для індустрії високих технологій в Україні

    Get PDF
    The problems of development of innovative learning environment of continuous education and training of skilled personnel for high-tech industry are described. Aspects of organization of ICT based learning environment of vocational and technical school on the basis of cloud computing and outsourcing are revealed. The three-stage conceptual model for perspective education and training of workers for high-tech industries is proposed. The model of cloud-based solution for design of learning environment for vocational education and training of skilled workers is introduced.У статті висвітлено проблеми розвитку інноваційного середовища навчання, неперервної освіти і підготовки кадрів для високотехнологічних галузей промисловості. Виявлено особливості організації інформаційно-освітнього середовища професійно-технічних навчальних закладів на основі технології хмарних обчислень і механізму аутсорсингу. Запропонована триступенева концептуальна модель навчання та підготовки кадрів для високотехнологічних галузей виробництва. Обґрунтовано моделі хмарних рішень для проектування середовища навчання для професійної освіти і підготовки високо кваліфікованих робітникі
    corecore