100,540 research outputs found

    From Gatekeeping to Engagement: A Multicontextual, Mixed Method Study of Student Academic Engagement in Introductory STEM Courses.

    Get PDF
    The lack of academic engagement in introductory science courses is considered by some to be a primary reason why students switch out of science majors. This study employed a sequential, explanatory mixed methods approach to provide a richer understanding of the relationship between student engagement and introductory science instruction. Quantitative survey data were drawn from 2,873 students within 73 introductory science, technology, engineering, and mathematics (STEM) courses across 15 colleges and universities, and qualitative data were collected from 41 student focus groups at eight of these institutions. The findings indicate that students tended to be more engaged in courses where the instructor consistently signaled an openness to student questions and recognizes her/his role in helping students succeed. Likewise, students who reported feeling comfortable asking questions in class, seeking out tutoring, attending supplemental instruction sessions, and collaborating with other students in the course were also more likely to be engaged. Instructional implications for improving students' levels of academic engagement are discussed

    Learning Dimensions: Lessons from Field Studies

    Get PDF
    In this paper, we describe work to investigate the creation of engaging programming learning experiences. Background research informed the design of four fieldwork studies involving a range of age groups to explore how programming tasks could best be framed to motivate learners. Our empirical findings from these four studies, described here, contributed to the design of a set of programming "Learning Dimensions" (LDs). The LDs provide educators with insights to support key design decisions for the creation of engaging programming learning experiences. This paper describes the background to the identification of these LDs and how they could address the design and delivery of highly engaging programming learning tasks. A web application has been authored to support educators in the application of the LDs to their lesson design

    A Cooperative Development System for an Interactive Introductory Programming Course

    Get PDF
    We present a system for a cooperative development of computer programs that was created for the lab sessions of an introductory programming course at the University of Ljubljana, Slovenia. The system relieved the students from the tedious task of retyping programs developed by the teaching assistant and enabled them to cooperate with the teaching assistant in solving programming problems. We thus made the lab sessions more efficient and interactive and brought them closer to the spirit of active learning approaches

    Summer learning experience for girls in grades 7–9 boosts confidence and interest in computing careers

    Get PDF
    Academic exposure to computer science, encouragement to study computer science, and connecting personal interests to computing areas influence women to pursue degrees in computer science. Guided by these recommendations, we designed and offered a summer learning experience for girls in grades 7--9 in summer 2016. The goal of the program was to improve girls\u27 perceptions of learning computer science through academic exposure in the informal setting of a girls-only summer camp. In this paper we present a study of the girls\u27 perceptions of CS learning. Four constructs were used to develop pre- and post-survey items: computing confidence, intent to persist, social supports, and computing outcomes expectations. The camp appeared to have positively influenced the girls on two of the four constructs, by improving computing confidence and positive perceptions of computing careers

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future
    • 

    corecore