7,808 research outputs found

    Innovative learning in action (ILIA) issue five: Learning technologies in the curriculum

    Get PDF
    Consideration of the papers and snapshots in this edition of Innovative Learning in Action, focused on learning technology, will provide the reader with insights into a range of excellent and innovative approaches to the application of learning technologies to enhance learning both in the classroom and at a distance. It also provides us with examples of how learning technologies can both stimulate and support partnership with staff and students and collaborative learning and working. This edition is particularly timely given the aim of the University’s 2005-2008 Learning Technologies Implementation Plan (LTIP), which is to enhance the quality of, and access to, learning, teaching and assessment by supporting and developing the curriculum through the appropriate and effective use of learning technologies. The LTIP is designed to help us to reach a situation where the effective use of appropriate learning technologies becomes part of our normal teaching, research and enterprise activities, and enhances access to our programmes by all our students whether they are learning on campus, at a distance, or in the workplace. The emphasis at the University of Salford has consistently been on the identification and creative application of the appropriate blends of ICT and traditional methods, shaped by pedagogical, rather than technological drivers, and acknowledging and reflecting different academic contexts and professional and vocational requirements. We have some excellent examples of how this has been achieved here, ILIA once again providing us with an opportunity to reflect on practice and student learning, to share experience and hopefully to identify future areas for collaboration in a key area of curriculum development

    NEXUS/Physics: An interdisciplinary repurposing of physics for biologists

    Get PDF
    In response to increasing calls for the reform of the undergraduate science curriculum for life science majors and pre-medical students (Bio2010, Scientific Foundations for Future Physicians, Vision & Change), an interdisciplinary team has created NEXUS/Physics: a repurposing of an introductory physics curriculum for the life sciences. The curriculum interacts strongly and supportively with introductory biology and chemistry courses taken by life sciences students, with the goal of helping students build general, multi-discipline scientific competencies. In order to do this, our two-semester NEXUS/Physics course sequence is positioned as a second year course so students will have had some exposure to basic concepts in biology and chemistry. NEXUS/Physics stresses interdisciplinary examples and the content differs markedly from traditional introductory physics to facilitate this. It extends the discussion of energy to include interatomic potentials and chemical reactions, the discussion of thermodynamics to include enthalpy and Gibbs free energy, and includes a serious discussion of random vs. coherent motion including diffusion. The development of instructional materials is coordinated with careful education research. Both the new content and the results of the research are described in a series of papers for which this paper serves as an overview and context.Comment: 12 page

    Identifying Student Difficulties with Entropy, Heat Engines, and the Carnot Cycle

    Get PDF
    We report on several specific student difficulties regarding the Second Law of Thermodynamics in the context of heat engines within upper-division undergraduates thermal physics courses. Data come from ungraded written surveys, graded homework assignments, and videotaped classroom observations of tutorial activities. Written data show that students in these courses do not clearly articulate the connection between the Carnot cycle and the Second Law after lecture instruction. This result is consistent both within and across student populations. Observation data provide evidence for myriad difficulties related to entropy and heat engines, including students' struggles in reasoning about situations that are physically impossible and failures to differentiate between differential and net changes of state properties of a system. Results herein may be seen as the application of previously documented difficulties in the context of heat engines, but others are novel and emphasize the subtle and complex nature of cyclic processes and heat engines, which are central to the teaching and learning of thermodynamics and its applications. Moreover, the sophistication of these difficulties is indicative of the more advanced thinking required of students at the upper division, whose developing knowledge and understanding give rise to questions and struggles that are inaccessible to novices

    Determination the different categories of buyers based on the Jaynes’ information principle

    Get PDF
    Purpose: The article aims to reduce the volume of statistical data, necessary for determination the buyer’s structure. The correct clustering of clients is important for successful activity for both commercial and non-profit organizations. This issue is devoted to a large number of studies. Their main mathematical apparatus is statistical methods. Input data are results of buyer polls. Polls are labor-consuming and quite often annoying buyers. The problem of determination of structure (various categories) of buyers by the mathematical methods demanding a small amount of these polls is relevant. Design/Methodology/Approach: The approach offered in this report based on the Jaynes' information principle (principle of maximum entropy). Jaynes idea is as follows. Let us consider a system in which the conditions cannot be calculated or measured by an experiment. However, each state of the system has a certain measured implication, the average value of which is known (or can be defined), and the average result of these implications is known from the statistical data. Then the most objective are probabilities of states maximizing Shannon’s entropy under restrictions imposed by information about average implications of states. Findings: In this work the task of determination of percentage of buyers for computer shop by the average check is set and solved provided that average checks for each concrete category of buyers are known. Input data for calculation are their average checks. Determination of these values requires much less statistical data, than to directly determine relative number of buyers of various categories. Practical Implications: The results are of particular interest to marketing experts. Originality/Value: The article deals with practical situation when initially there are only three different groups of customers. For this case, the problem of maximizing entropy under given constraints reduced to the problem of finding a solution to a system of three equations, of which only one is nonlinear. This is a completely new result.peer-reviewe

    Using Data in Undergraduate Science Classrooms

    Get PDF
    Provides pedagogical insight concerning the skill of using data The resource being annotated is: http://www.dlese.org/dds/catalog_DATA-CLASS-000-000-000-007.htm

    The Effect of Student Learning Styles on the Learning Gains Achieved When Interactive Simulations Are Coupled with Real-Time Formative Assessment via Pen-Enabled Mobile Technology

    Full text link
    This paper describes results from a project in an undergraduate engineering physics course that coupled classroom use of interactive computer simulations with the collection of real-time formative assessment using pen-enabled mobile technology. Interactive simulations (free or textbook-based) are widely used across the undergraduate science and engineering curriculia to help actively engaged students increase their understanding of abstract concepts or phenomena which are not directly or easily observable. However, there are indications in the literature that we do not yet know the pedagogical best practices associated with their use to maximize learning. This project couples student use of interactive simulations with the gathering of real-time formative assessment via pen-enabled mobile technology (in this case, Tablet PCs). The research question addressed in this paper is: are learning gains achieved with this coupled model greater for certain types of learners in undergraduate STEM classrooms? To answer this, we correlate learning gains with various learning styles, as identified using the Index of Learning Styles (ILS) developed by Felder and Soloman. These insights will be useful for others who use interactive computer simulations in their instruction and other adopters of this pedagogical model; the insights may have broader implications about modification of instruction to address various learning styles.Comment: 6 pages 2 tables and 1 figur

    An Investigation of Students’ Use of a Computational Science Simulation in an Online High School Physics Class

    Get PDF
    Science educators have begun to explore how students have opportunities to not only view and manipulate simulations, but also to analyze the complex sources of data they generate. While scholars have documented the characteristics and the effects of using simulations as a source of data in face-to-face, K-12 classrooms, how simulations can be taken up and used in such a way in fully-online classes is less-explored. In this study, we present results from our initial qualitative investigation of students’ use of a simulation in such a way across three lessons in an online, Advanced Placement high school physics class. In all, 13 students participated in the use of a computational science simulation that we adapted to output quantitative data across the lesson sequence. Students used the simulation and developed a class data set, which students then used to understand, interpret, and model a thermodynamics-related concept and phenomenon. We explored the progression of students’ conceptual understanding across the three lessons, students’ perceptions of the strengths and weaknesses of the simulation, and how students balanced explaining variability and being able to interpret their model of the class data set. Responses to embedded assessment questions indicated that a few developed more sophisticated conceptual understanding of the particle nature of matter and how it relates to diffusion, while others began the lesson sequence with an already-sophisticated understanding, and a few did not demonstrate changes in their understanding. Students reported that the simulation helped to make a complex idea more accessible and useful and that the data generated by the simulation made it easier to understand what the simulation was representing. When analyzing the class data set, some students focused on fitting the data, not considering the interpretability of the model as much, whereas other students balanced model fit with interpretability and usefulness. In all, findings suggest that the lesson sequence had educational value, but that modifications to the design of the simulation and lesson sequence and to the technologies used could enhance its impact. Implications and recommendations for future research focus on the potential for simulations to be used to engage students in a variety of scientific and engineering practices in online science classes

    Disciplinary authenticity and personal relevance in school science

    Get PDF
    Pursuing both disciplinary authenticity and personal relevance in the teaching and learning of science in school generates tensions that should be acknowledged and resolved. This paper problematizes and explores the conceptualizations of these tensions by considering personal relevance, disciplinary authenticity, and common school science as three perspectives that entail different educational goals. Based on an analysis of the literature, we identify five facets of the tensions: content fidelity, content coverage, language and discursive norms, epistemic structure and standards, and significance. We then explore the manifestations of these facets in two different examples of the instruction and learning of physics at the advanced high school level in Israel and Italy. Our analysis suggests that (1) the manifestations of these tensions and their resolution are highly contextual. (2) While maintaining personal relevance and disciplinary authenticity requires some negotiation, the main tension that needs to be resolved is between personal relevance and common school science. (3) Disciplinary authenticity, when considered in terms of its full depth and scope, can be equipped to resolve this tension within the discipline. (4) To achieve resolution, teachers’ expertise should include not only pedagogical expertise but also a deep and broad disciplinary understanding.Peer reviewe
    • …
    corecore