5,732 research outputs found

    Sketchy rendering for information visualization

    Get PDF
    We present and evaluate a framework for constructing sketchy style information visualizations that mimic data graphics drawn by hand. We provide an alternative renderer for the Processing graphics environment that redefines core drawing primitives including line, polygon and ellipse rendering. These primitives allow higher-level graphical features such as bar charts, line charts, treemaps and node-link diagrams to be drawn in a sketchy style with a specified degree of sketchiness. The framework is designed to be easily integrated into existing visualization implementations with minimal programming modification or design effort. We show examples of use for statistical graphics, conveying spatial imprecision and for enhancing aesthetic and narrative qualities of visual- ization. We evaluate user perception of sketchiness of areal features through a series of stimulus-response tests in order to assess users’ ability to place sketchiness on a ratio scale, and to estimate area. Results suggest relative area judgment is compromised by sketchy rendering and that its influence is dependent on the shape being rendered. They show that degree of sketchiness may be judged on an ordinal scale but that its judgement varies strongly between individuals. We evaluate higher-level impacts of sketchiness through user testing of scenarios that encourage user engagement with data visualization and willingness to critique visualization de- sign. Results suggest that where a visualization is clearly sketchy, engagement may be increased and that attitudes to participating in visualization annotation are more positive. The results of our work have implications for effective information visualization design that go beyond the traditional role of sketching as a tool for prototyping or its use for an indication of general uncertainty

    Enhancing Civil Engineering teaching through 3D Computer Aided Design

    Get PDF
    3D interpretation of 2D drawing is not easy for most of the Civil Engineering first-year students. Some do it naturally but most need to be trained to master this skill. In this paper, the implemented teaching methodologies aiming to facilitate the acquisition of three-dimensional project visualization skills are presented. These methodologies were developed during the last two years targeting first-year Civil Engineering students at the University of Beira Interior (Portugal). After a first contact with 2D project representation through manual drawing, students progressively elaborate computer-aided design (CAD) project starting with simple 2D drawings and culminating with a 3D project of a pre-existing building. Students are also motivated to improve their 3D graphic representation skills through a classroom contest where the winning project is printed in 3D. The training in 2D and 3D graphic representation is complemented during the second year with several in situ surveys and computer-aided drawing of topographic data. This approach proved to be very interesting for competence acquisition, qualifying students for a better 3D representation and interpretation. Students also found this methodology to be motivating.info:eu-repo/semantics/publishedVersio

    A novel haptic model and environment for maxillofacial surgical operation planning and manipulation

    Get PDF
    This paper presents a practical method and a new haptic model to support manipulations of bones and their segments during the planning of a surgical operation in a virtual environment using a haptic interface. To perform an effective dental surgery it is important to have all the operation related information of the patient available beforehand in order to plan the operation and avoid any complications. A haptic interface with a virtual and accurate patient model to support the planning of bone cuts is therefore critical, useful and necessary for the surgeons. The system proposed uses DICOM images taken from a digital tomography scanner and creates a mesh model of the filtered skull, from which the jaw bone can be isolated for further use. A novel solution for cutting the bones has been developed and it uses the haptic tool to determine and define the bone-cutting plane in the bone, and this new approach creates three new meshes of the original model. Using this approach the computational power is optimized and a real time feedback can be achieved during all bone manipulations. During the movement of the mesh cutting, a novel friction profile is predefined in the haptical system to simulate the force feedback feel of different densities in the bone

    Architecture handbook

    Get PDF
    2002 handbook for the Faculty of Architectur

    Architecture handbook

    Get PDF
    2002 handbook for the Faculty of Architectur

    Technical Drawing With AutoCAD – Impact On Students’ Interest And Engagement In Unity Schools In Rivers State, Nigeria.

    Get PDF
    The study investigated the effect of AutoCAD on students’ interest and level of engagement in Technical Drawing in Unity Schools in Rivers State. The study adopted the 2-group post-test only quasi-experimental design.  Ninety-two (92) Technical Drawing students from two Unity Schools drawn from a population of 1071 were purposively sampled. Two research questions were answered while two hypotheses were tested at 0.05 level of significance. The instrument used for data collection was Technical Drawing Structured Questionnaire (TDSQ). The TDSQ was made up of two sections, A and B, which measured students’ interest and engagement towards AutoCAD usage in Technical Drawing. A reliability co-efficient of 0.72 was obtained using Cronbach Alpha. Mean and standard deviation were used to answer the research questions, while Independent t-test was used to test the hypotheses. The findings revealed among others that AutoCAD had a significant effect on students’ interest and level of engagement in Technical Drawing. Based on the findings, it was recommended that Technical Drawing teachers, and school Administrators should employ necessary measures to sustain the positive attitude of students towards the use of AutoCAD in Technical Drawing. Keywords: AutoCAD; Technical Drawing; Interest; Engagement

    Planning Support Systems: Progress, Predictions, and Speculations on the Shape of Things to Come

    Get PDF
    In this paper, we review the brief history of planning support systems, sketching the way both the fields of planning and the software that supports and informs various planning tasks have fragmented and diversified. This is due to many forces which range from changing conceptions of what planning is for and who should be involved, to the rapid dissemination of computers and their software, set against the general quest to build ever more generalized software products applicable to as many activities as possible. We identify two main drivers – the move to visualization which dominates our very interaction with the computer and the move to disseminate and share software data and ideas across the web. We attempt a brief and somewhat unsatisfactory classification of tools for PSS in terms of the planning process and the software that has evolved, but this does serve to point up the state-ofthe- art and to focus our attention on the near and medium term future. We illustrate many of these issues with three exemplars: first a land usetransportation model (LUTM) as part of a concern for climate change, second a visualization of cities in their third dimension which is driving an interest in what places look like and in London, a concern for high buildings, and finally various web-based services we are developing to share spatial data which in turn suggests ways in which stakeholders can begin to define urban issues collaboratively. All these are elements in the larger scheme of things – in the development of online collaboratories for planning support. Our review far from comprehensive and our examples are simply indicative, not definitive. We conclude with some brief suggestions for the future

    New design companions opening up the process through self-made computation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Architecture, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 73-75).This thesis is about man and machine roles in the early conception of designs where it investigates computational methods that support creativity and surprise. It discusses the relationship between human and digital medium in the enterprise of Computer-Aided Design', and Self-Made Computation to empower the designer as driver of digital processes taking the computer as an active collaborator, or a sharp apprentice, rather than a master. In a design process tool personalization enables precise feedback between human and medium. In the field of architecture, every project is unique, and there are as many design workflows as designers. However current off-the-shelf design software has an inflexible built-in structure targeting general problem-solving that can interfere with non-standard design needs. Today, those with programming agility look for customized processes that assist early problem-finding instead of converging solutions. Contributing to alleviate software frustrations, smaller tailor-made applications prove to be precisely tailored, viable and enriching companions in certain moments of the project development. Previous work on the impact of standardized software for design has focused on the figure of the designer as a tool-user, this thesis addresses the question from the vision of the designer as a tool-maker. It investigates how self-made software can become a design companion for computational thinking - observed here as a new mindset that shifts design workflows, rather than a technique. The research compares and diagrams designer-toolmaker work where self-made applets where produced, as well as the structures in the work of rule-maker artisans. The main contributions are a comparative study of three models of computer-aided design, their history and technical review, their influence in design workflows and a graphical framework to better compare them. Critical analysis reveals a common structure to tailor a creative and explorative design workflow. Its advantages and limitations are exposed to guide designers into alternative computational methods for design processes. Keywords: design workflow; computation; applets; self-made tools; diagrams; design process; feedback; computers; computer-assisted-designby Laia Mogas-Soldevila.S.M
    • …
    corecore