208 research outputs found

    Mobile security with location-aware role-based access control

    Get PDF
    This paper describes how location-aware Role-Based Access Control (RBAC) can be implemented on top of the Geographically eXtensible Access Control Markup Language (GeoXACML). It furthermore sketches how spatial separation of duty constraints (both static and dynamic) can be implemented using GeoXACML on top of the XACML RBAC profile. The solution uses physical addressing of geographical locations which facilitates easy deployment of authorisation profiles to the mobile device. Location-aware RBAC can be used to implement location dependent access control and also other security enhancing solutions on mobile devices, like location dependent device locking, firewall, intrusion prevention or payment anti-fraud systems

    Dynamic deployment of context-aware access control policies for constrained security devices

    Get PDF
    Securing the access to a server, guaranteeing a certain level of protection over an encrypted communication channel, executing particular counter measures when attacks are detected are examples of security requirements. Such requirements are identi ed based on organizational purposes and expectations in terms of resource access and availability and also on system vulnerabilities and threats. All these requirements belong to the so-called security policy. Deploying the policy means enforcing, i.e., con guring, those security components and mechanisms so that the system behavior be nally the one speci ed by the policy. The deployment issue becomes more di cult as the growing organizational requirements and expectations generally leave behind the integration of new security functionalities in the information system: the information system will not always embed the necessary security functionalities for the proper deployment of contextual security requirements. To overcome this issue, our solution is based on a central entity approach which takes in charge unmanaged contextual requirements and dynamically redeploys the policy when context changes are detected by this central entity. We also present an improvement over the OrBAC (Organization-Based Access Control) model. Up to now, a controller based on a contextual OrBAC policy is passive, in the sense that it assumes policy evaluation triggered by access requests. Therefore, it does not allow reasoning about policy state evolution when actions occur. The modi cations introduced by our work overcome this limitation and provide a proactive version of the model by integrating concepts from action speci cation languages

    Dynamic Control System Based On Context for Mobile Devices

    Get PDF
    “To render the accurate information, at correct place in real period with custom-made setup and locality sensitiveness” is the inspiration for every location based information scheme. Android applications in mobile devices may often have access to susceptible data and resources on user device. “Location Based Services” can only provide services that give a data and information to person, wherever he might be through various android applications. To avoid the data misuse by malicious applications, an application may get privilege on the specific user location and thus a Context Based Access Control Mechanism (CBACM) is needed so that privileges can be established and revoked vigorously. A very interesting application include shadowing where immediate information is required to choose if the people being monitored are valid intimidation or an flawed object. The execution of CBACM differentiates between the narrowly located sub-areas within the distinct area. Android operating system is modified such that context based access restriction can be precise and imposed. DOI: 10.17762/ijritcc2321-8169.15057

    Applications of Context-Aware Systems in Enterprise Environments

    Get PDF
    In bring-your-own-device (BYOD) and corporate-owned, personally enabled (COPE) scenarios, employees’ devices store both enterprise and personal data, and have the ability to remotely access a secure enterprise network. While mobile devices enable users to access such resources in a pervasive manner, it also increases the risk of breaches for sensitive enterprise data as users may access the resources under insecure circumstances. That is, access authorizations may depend on the context in which the resources are accessed. In both scenarios, it is vital that the security of accessible enterprise content is preserved. In this work, we explore the use of contextual information to influence access control decisions within context-aware systems to ensure the security of sensitive enterprise data. We propose several context-aware systems that rely on a system of sensors in order to automatically adapt access to resources based on the security of users’ contexts. We investigate various types of mobile devices with varying embedded sensors, and leverage these technologies to extract contextual information from the environment. As a direct consequence, the technologies utilized determine the types of contextual access control policies that the context-aware systems are able to support and enforce. Specifically, the work proposes the use of devices pervaded in enterprise environments such as smartphones or WiFi access points to authenticate user positional information within indoor environments as well as user identities

    A Context-Aware System to Secure Enterprise Content: Incorporating Reliability Specifiers

    Get PDF
    The sensors of a context-aware system extract contextual information from the environment and relay that information to higher-level processes of the system so to influence the system\u2019s control decisions. However, an adversary can maliciously influence such controls indirectly by manipulating the environment in which the sensors are monitoring, thereby granting privileges the adversary would otherwise not normally have. To address such context monitoring issues, we extend CASSEC by incorporating sentience-like constructs, which enable the emulation of \u201dconfidence\u201d, into our proximity-based access control model to grant the system the ability to make more inferable decisions based on the degree of reliability of extracted contextual information. In CASSEC 2.0, we evaluate our confidence constructs by implementing two new authentication mechanisms. Co-proximity authentication employs our time-based challenge-response protocol, which leverages Bluetooth Low Energy beacons as its underlying occupancy detection technology. Biometric authentication relies on the accelerometer and fingerprint sensors to measure behavioral and physiological user features to prevent unauthorized users from using an authorized user\u2019s device. We provide a feasibility study demonstrating how confidence constructs can improve the decision engine of context-aware access control systems

    Secure platforms for enforcing contextual access control

    Get PDF
    Advances in technology and wide scale deployment of networking enabled portable devices such as smartphones has made it possible to provide pervasive access to sensitive data to authorized individuals from any location. While this has certainly made data more accessible, it has also increased the risk of data theft as the data may be accessed from potentially unsafe locations in the presence of untrusted parties. The smartphones come with various embedded sensors that can provide rich contextual information such as sensing the presence of other users in a context. Frequent context profiling can also allow a mobile device to learn its surroundings and infer the familiarity and safety of a context. This can be used to further strengthen the access control policies enforced on a mobile device. Incorporating contextual factors into access control decisions requires that one must be able to trust the information provided by these context sensors. This requires that the underlying operating system and hardware be well protected against attacks from malicious adversaries. ^ In this work, we explore how contextual factors can be leveraged to infer the safety of a context. We use a context profiling technique to gradually learn a context\u27s profile, infer its familiarity and safety and then use this information in the enforcement of contextual access policies. While intuitive security configurations may be suitable for non-critical applications, other security-critical applications require a more rigorous definition and enforcement of contextual policies. We thus propose a formal model for proximity that allows one to define whether two users are in proximity in a given context and then extend the traditional RBAC model by incorporating these proximity constraints. Trusted enforcement of contextual access control requires that the underlying platform be secured against various attacks such as code reuse attacks. To mitigate these attacks, we propose a binary diversification approach that randomizes the target executable with every run. We also propose a defense framework based on control flow analysis that detects, diagnoses and responds to code reuse attacks in real time

    Geo-social-rbac: A location-based socially aware access control framework

    Get PDF
    The ubiquity of low-cost GPS-enabled mobile devices and the proliferation of online social networks have enabled the collection of rich geo-social information that includes the whereabouts of the users and their social connections. This information can be used to provide a rich set of access control policies that ensure that resources are utilized securely. Existing literature focuses on providing access control systems that control the access solely based on either the location of the users or their social connections. In this paper, we argue that a number of real-world applications demand an access control model that effectively captures both the geographic as well as the social dimensions of the users in a given location. We propose, Geo-social-RBAC, a new role based access control model that allows the inclusion of geo-social constraints as part of the access control policy. Our model, besides capturing the locations of a user requesting access and her social connections, includes geo-social cardinality constraints that dictate how many people related by a particular social relation need to be present in the required locations at the time of an access. The model also allows specification of geo-social and location trace constraints that may be used to dictate if an access needs to be granted or denied

    Robust access control framework for mobile cloud computing network

    Get PDF
    Unified communications has enabled seamless data sharing between multiple devices running on various platforms. Traditionally, organizations use local servers to store data and employees access the data using desktops with predefined security policies. In the era of unified communications, employees exploit the advantages of smart devices and 4G wireless technology to access the data from anywhere and anytime. Security protocols such as access control designed for traditional setup are not sufficient when integrating mobile devices with organization's internal network. Within this context, we exploit the features of smart devices to enhance the security of the traditional access control technique. Dynamic attributes in smart devices such as unlock failures, application usage, location and proximity of devices can be used to determine the risk level of an end-user. In this paper, we seamlessly incorporate the dynamic attributes to the conventional access control scheme. Inclusion of dynamic attributes provides an additional layer of security to the conventional access control. We demonstrate that the efficiency of the proposed algorithm is comparable to the efficiency of the conventional schemes
    • …
    corecore