613 research outputs found

    50 years of isolation

    Get PDF
    The traditional means for isolating applications from each other is via the use of operating system provided “process” abstraction facilities. However, as applications now consist of multiple fine-grained components, the traditional process abstraction model is proving to be insufficient in ensuring this isolation. Statistics indicate that a high percentage of software failure occurs due to propagation of component failures. These observations are further bolstered by the attempts by modern Internet browser application developers, for example, to adopt multi-process architectures in order to increase robustness. Therefore, a fresh look at the available options for isolating program components is necessary and this paper provides an overview of previous and current research on the area

    A TrustZone-assisted secure silicon on a co-design framework

    Get PDF
    Dissertação de mestrado em Engenharia Eletrónica Industrial e ComputadoresEmbedded systems were for a long time, single-purpose and closed systems, characterized by hardware resource constraints and real-time requirements. Nowadays, their functionality is ever-growing, coupled with an increasing complexity and heterogeneity. Embedded applications increasingly demand employment of general-purpose operating systems (GPOSs) to handle operator interfaces and general-purpose computing tasks, while simultaneously ensuring the strict timing requirements. Virtualization, which enables multiple operating systems (OSs) to run on top of the same hardware platform, is gaining momentum in the embedded systems arena, driven by the growing interest in consolidating and isolating multiple and heterogeneous environments. The penalties incurred by classic virtualization approaches is pushing research towards hardware-assisted solutions. Among the existing commercial off-the-shelf (COTS) technologies for virtualization, ARM TrustZone technology is gaining momentum due to the supremacy and lower cost of TrustZone-enabled processors. Programmable system-on-chips (SoCs) are becoming leading players in the embedded systems space, because the combination of a plethora of hard resources with programmable logic enables the efficient implementation of systems that perfectly fit the heterogeneous nature of embedded applications. Moreover, novel disruptive approaches make use of field-programmable gate array (FPGA) technology to enhance virtualization mechanisms. This master’s thesis proposes a hardware-software co-design framework for easing the economy of addressing the new generation of embedded systems requirements. ARM TrustZone is exploited to implement the root-of-trust of a virtualization-based architecture that allows the execution of a GPOS side-by-side with a real-time OS (RTOS). RTOS services were offloaded to hardware, so that it could present simultaneous improvements on performance and determinism. Instead of focusing in a concrete application, the goal is to provide a complete framework, specifically tailored for Zynq-base devices, that developers can use to accelerate a bunch of distinct applications across different embedded industries.Os sistemas embebidos foram, durante muitos anos, sistemas com um simples e único propósito, caracterizados por recursos de hardware limitados e com cariz de tempo real. Hoje em dia, o número de funcionalidades começa a escalar, assim como o grau de complexidade e heterogeneidade. As aplicações embebidas exigem cada vez mais o uso de sistemas operativos (OSs) de uso geral (GPOS) para lidar com interfaces gráficas e tarefas de computação de propósito geral. Porém, os seus requisitos primordiais de tempo real mantém-se. A virtualização permite que vários sistemas operativos sejam executados na mesma plataforma de hardware. Impulsionada pelo crescente interesse em consolidar e isolar ambientes múltiplos e heterogéneos, a virtualização tem ganho uma crescente relevância no domínio dos sistemas embebidos. As adversidades que advém das abordagens de virtualização clássicas estão a direcionar estudos no âmbito de soluções assistidas por hardware. Entre as tecnologias comerciais existentes, a tecnologia ARM TrustZone está a ganhar muita relevância devido à supremacia e ao menor custo dos processadores que suportam esta tecnologia. Plataformas hibridas, que combinam processadores com lógica programável, estão em crescente penetração no domínio dos sistemas embebidos pois, disponibilizam um enorme conjunto de recursos que se adequam perfeitamente à natureza heterogénea dos sistemas atuais. Além disso, existem soluções recentes que fazem uso da tecnologia de FPGA para melhorar os mecanismos de virtualização. Esta dissertação propõe uma framework baseada em hardware-software de modo a cumprir os requisitos da nova geração de sistemas embebidos. A tecnologia TrustZone é explorada para implementar uma arquitetura que permite a execução de um GPOS lado-a-lado com um sistemas operativo de tempo real (RTOS). Os serviços disponibilizados pelo RTOS são migrados para hardware, para melhorar o desempenho e determinismo do OS. Em vez de focar numa aplicação concreta, o objetivo é fornecer uma framework especificamente adaptada para dispositivos baseados em System-on-chips Zynq, de forma a que developers possam usar para acelerar um vasto número de aplicações distintas em diferentes setores

    Challenges in real-time virtualization and predictable cloud computing

    Get PDF
    Cloud computing and virtualization technology have revolutionized general-purpose computing applications in the past decade. The cloud paradigm offers advantages through reduction of operation costs, server consolidation, flexible system configuration and elastic resource provisioning. However, despite the success of cloud computing for general-purpose computing, existing cloud computing and virtualization technology face tremendous challenges in supporting emerging soft real-time applications such as online video streaming, cloud-based gaming, and telecommunication management. These applications demand real-time performance in open, shared and virtualized computing environments. This paper identifies the technical challenges in supporting real-time applications in the cloud, surveys recent advancement in real-time virtualization and cloud computing technology, and offers research directions to enable cloud-based real-time applications in the future

    Analysis of Performance and Power Aspects of Hypervisors in Soft Real-Time Embedded Systems

    Get PDF
    The exponential growth of malware designed to attack soft real-time embedded systems has necessitated solutions to secure these systems. Hypervisors are a solution, but the overhead imposed by them needs to be quantitatively understood. Experiments were conducted to quantify the overhead hypervisors impose on soft real-time embedded systems. A soft real-time computer vision algorithm was executed, with average and worst-case execution times measured as well as the average power consumption. These experiments were conducted with two hypervisors and a control configuration. The experiments showed that each hypervisor imposed differing amounts of overhead, with one achieving near native performance and the other noticeably impacting the performance of the system

    Energy Management for Hypervisor-Based Virtual Machines

    Get PDF
    Current approaches to power management are based on operating systems with full knowledge of and full control over the underlying hardware; the distributed nature of multi-layered virtual machine environments renders such approaches insufficient. In this paper, we present a novel framework for energy management in modular, multi-layered operating system structures. The framework provides a unified model to partition and distribute energy, and mechanisms for energy-aware resource accounting and allocation. As a key property, the framework explicitly takes the recursive energy consumption into account, which is spent, e.g., in the virtualization layer or subsequent driver components. Our prototypical implementation targets hypervisor- based virtual machine systems and comprises two components: a host-level subsystem, which controls machine-wide energy constraints and enforces them among all guest OSes and service components, and, complementary, an energy-aware guest operating system, capable of fine-grained applicationspecific energy management. Guest level energy management thereby relies on effective virtualization of physical energy effects provided by the virtual machine monitor. Experiments with CPU and disk devices and an external data acquisition system demonstrate that our framework accurately controls and stipulates the power consumption of individual hardware devices, both for energy-aware and energyunaware guest operating systems

    Hardware IPC for a TrustZone-assisted Hypervisor

    Get PDF
    Dissertação de mestrado em Engenharia Eletrónica Industrial e ComputadoresIn this modern era ruled by technology and the IoT (Internet of Things), embedded systems have an ubiquitous presence in our daily lives. Although they do differ from each other in their functionalities and end-purpose, they all share the same basic requirements: safety and security. Whether in a non-critical system such as a smartphone, or a critical one, like an electronic control unit of any modern vehicle, these requirements must always be fulfilled in order to accomplish a reliable and trust-worthy system. One well-established technology to address this problem is virtualization. It provides isolation by encapsulating each subsystem in separate Virtual-Machines (VMs), while also enabling the sharing of hardware resources. However, these isolated subsystems may still need to communicate with each other. Inter-Process Communication is present in most OSes’ stacks, representing a crucial part of it, which allows, through a myriad of different mechanisms, communication be- tween tasks. In a virtualized system, Inter-Partition Communication mechanisms implement the communication between the different subsystems referenced above. TrustZone technology has been in the forefront of hardware-assisted security and it has been explored for virtualization purposes, since natively it provides sep- aration between two execution worlds while enforcing, by design, different privi- lege to these execution worlds. LTZVisor, an open-source lightweight TrustZone- assisted hypervisor, emerged as a way of providing a platform for exploring how TrustZone can be exploited to assist virtualization. Its IPC mechanism, TZ- VirtIO, constitutes a standard virtual I/O approach for achieving communication between the OSes, but some overhead is caused by the introduction of the mech- anism. Hardware-based solutions are yet to be explored with this solution, which could bring performance and security benefits while diminishing overhead. Attending the reasons mentioned above, hTZ-VirtIO was developed as a way to explore the offloading of the software-based communication mechanism of the LTZVisor to hardware-based mechanisms.Atualmente, onde a tecnologia e a Internet das Coisas (IoT) dominam a so- ciedade, os sistemas embebidos são omnipresentes no nosso dia-a-dia, e embora possam diferir entre as funcionalidades e objetivos finais, todos partilham os mes- mos requisitos básicos. Seja um sistema não crítico, como um smartphone, ou um sistema crítico, como uma unidade de controlo de um veículo moderno, estes requisitos devem ser cumpridos de maneira a se obter um sistema confiável. Uma tecnologia bem estabelecida para resolver este problema é a virtualiza- ção. Esta abordagem providencia isolamento através do encapsulamento de sub- sistemas em máquinas virtuais separadas, além de permitir a partilha de recursos de hardware. No entanto, estes subsistemas isolados podem ter a necessidade de comunicar entre si. Comunicação entre tarefas está presente na maioria das pilhas de software de qualquer sistema e representa uma parte crucial dos mesmos. Num sistema virtualizado, os mecanismos de comunicação entre-partições implementam a comunicação entre os diferentes subsistemas mencionados acima. A tecnologia TrustZone tem estado na vanguarda da segurança assistida por hardware, e tem sido explorada na implementação de sistemas virtualizados, visto que permite nativamente a separação entre dois mundos de execução, e impondo ao mesmo tempo, por design, privilégios diferentes a esses mundos de execução. O LTZVisor, um hypervisor em código-aberto de baixo overhead assistido por Trust- Zone, surgiu como uma forma de fornecer uma plataforma que permite a explo- ração da TrustZone como tecnologia de assistência a virtualização. O TZ-VirtIO, mecanismo de comunicação do LTZVisor, constitui uma abordagem padrão de E/S virtuais, para permitir comunicação entre os sistemas operativos. No entanto, a introdução deste mecanismo provoca sobrecarga sobre o hypervisor. Soluções baseadas em hardware para o TZ-VirtIO ainda não foram exploradas, e podem trazer benefícios de desempenho e segurança, e diminuir a sobrecarga. Atendendo às razões mencionadas acima, o hTZ-VirtIO foi desenvolvido como uma maneira de explorar a migração do mecanismo de comunicação baseado em software do LTZVisor para mecanismos baseados em hardware

    Virtualization techniques for memory resource exploitation

    Get PDF
    Cloud infrastructures have become indispensable in our daily lives with the rise of cloud-based services offered by companies like Facebook, Google, Amazon and many others. These cloud infrastructures use a large numbers of servers provisioned with their own computing resources. Each of these servers use a piece of software, called the Hypervisor (``HV''), that allows them to create multiple virtual instances of the server's physical computing resources and abstract them into "Virtual Machines'' (VMs). A VM runs an Operating System, which in turn runs the applications. The VMs within the servers generate varying memory demand behavior. When the demand increases, costly operations such as (virtual) disk accesses and/or VM migrations can occur. As a result, it is necessary to optimize the utilization of the local memory resources within a single computing server. However, pressure on the memory resources can still increase, making it necessary to migrate the VM to a different server with larger memory or add more memory to the same server. At this point, it is important to consider that some of the servers in the cloud infrastructure might have memory resources that they are not using. Considering the possibility to make memory available to the server, new architectures have been introduced that provide hardware support to enable servers to share their memory capacity. This thesis presents multiple contributions to the memory management problem. First, it addresses the problem of optimizing memory resources in a virtualized server through different types of memory abstractions. Two full contributions are presented for managing memory within a single server called SmarTmem and CARLEMM. In this respect, a third contribution is also presented, called CAVMem, that works as the foundation for CARLEMM. Second, this thesis presents two contributions for memory capacity aggregation across multiple servers, offering two mechanisms called GV-Tmem and vMCA, this latter being based on GV-Tmem but with significant enhancements. These mechanisms distribute the server's total memory within a single-server and globally across computing servers using a user-space process with high-level memory management policies.Las infraestructuras para la nube se han vuelto indispensables en nuestras vidas diarias con la proliferación de los servicios ofrecidos por compañías como Facebook, Google, Amazon entre otras. Estas infraestructuras utilizan una gran cantidad de servidores proveídos con sus propios recursos computacionales. Cada unos de estos servidores utilizan un software, llamado el Hipervisor (“HV”), que les permite crear múltiples instancias virtuales de los recursos físicos de computación del servidor y abstraerlos en “Máquinas Virtuales” (VMs). Una VM ejecuta un Sistema Operativo (OS), el cual a su vez ejecuta aplicaciones. Las VMs dentro de los servidores generan un comportamiento variable de demanda de memoria. Cuando la demanda de memoria aumenta, operaciones costosas como accesos al disco (virtual) y/o migraciones de VMs pueden ocurrir. Como resultado, es necesario optimizar la utilización de los recursos de memoria locales dentro del servidor. Sin embargo, la demanda por memoria puede seguir aumentando, haciendo necesario que la VM migre a otro servidor o que se añada más memoria al servidor. En este punto, es importante considerar que algunos servidores podrían tener recursos de memoria que no están utilizando. Considerando la posibilidad de hacer más memoria disponible a los servidores que lo necesitan, nuevas arquitecturas de servidores han sido introducidos que brindan el soporte de hardware necesario para habilitar que los servidores puedan compartir su capacidad de memoria. Esta tesis presenta múltiples contribuciones para el problema de manejo de memoria. Primero, se enfoca en el problema de optimizar los recursos de memoria en un servidor virtualizado a través de distintos tipos de abstracciones de memoria. Dos contribuciones son presentadas para administrar memoria de manera automática dentro de un servidor virtualizado, llamadas SmarTmem y CARLEMM. En este contexto, una tercera contribución es presentada, llamada CAVMem, que proporciona los fundamentos para el desarrollo de CARLEMM. Segundo, la tesis presenta dos contribuciones enfocadas en la agregación de capacidad de memoria a través de múltiples servidores, ofreciendo dos mecanismos llamados GV-Tmem y vMCA, siendo este último basado en GV-Tmem pero con mejoras significativas. Estos mecanismos administran la memoria total de un servidor a nivel local y de manera global a lo largo de los servidores de la infraestructura de nube utilizando un proceso de usuario que implementa políticas de manejo de ..

    Virtualization techniques for memory resource exploitation

    Get PDF
    Cloud infrastructures have become indispensable in our daily lives with the rise of cloud-based services offered by companies like Facebook, Google, Amazon and many others. These cloud infrastructures use a large numbers of servers provisioned with their own computing resources. Each of these servers use a piece of software, called the Hypervisor (``HV''), that allows them to create multiple virtual instances of the server's physical computing resources and abstract them into "Virtual Machines'' (VMs). A VM runs an Operating System, which in turn runs the applications. The VMs within the servers generate varying memory demand behavior. When the demand increases, costly operations such as (virtual) disk accesses and/or VM migrations can occur. As a result, it is necessary to optimize the utilization of the local memory resources within a single computing server. However, pressure on the memory resources can still increase, making it necessary to migrate the VM to a different server with larger memory or add more memory to the same server. At this point, it is important to consider that some of the servers in the cloud infrastructure might have memory resources that they are not using. Considering the possibility to make memory available to the server, new architectures have been introduced that provide hardware support to enable servers to share their memory capacity. This thesis presents multiple contributions to the memory management problem. First, it addresses the problem of optimizing memory resources in a virtualized server through different types of memory abstractions. Two full contributions are presented for managing memory within a single server called SmarTmem and CARLEMM. In this respect, a third contribution is also presented, called CAVMem, that works as the foundation for CARLEMM. Second, this thesis presents two contributions for memory capacity aggregation across multiple servers, offering two mechanisms called GV-Tmem and vMCA, this latter being based on GV-Tmem but with significant enhancements. These mechanisms distribute the server's total memory within a single-server and globally across computing servers using a user-space process with high-level memory management policies.Las infraestructuras para la nube se han vuelto indispensables en nuestras vidas diarias con la proliferación de los servicios ofrecidos por compañías como Facebook, Google, Amazon entre otras. Estas infraestructuras utilizan una gran cantidad de servidores proveídos con sus propios recursos computacionales. Cada unos de estos servidores utilizan un software, llamado el Hipervisor (“HV”), que les permite crear múltiples instancias virtuales de los recursos físicos de computación del servidor y abstraerlos en “Máquinas Virtuales” (VMs). Una VM ejecuta un Sistema Operativo (OS), el cual a su vez ejecuta aplicaciones. Las VMs dentro de los servidores generan un comportamiento variable de demanda de memoria. Cuando la demanda de memoria aumenta, operaciones costosas como accesos al disco (virtual) y/o migraciones de VMs pueden ocurrir. Como resultado, es necesario optimizar la utilización de los recursos de memoria locales dentro del servidor. Sin embargo, la demanda por memoria puede seguir aumentando, haciendo necesario que la VM migre a otro servidor o que se añada más memoria al servidor. En este punto, es importante considerar que algunos servidores podrían tener recursos de memoria que no están utilizando. Considerando la posibilidad de hacer más memoria disponible a los servidores que lo necesitan, nuevas arquitecturas de servidores han sido introducidos que brindan el soporte de hardware necesario para habilitar que los servidores puedan compartir su capacidad de memoria. Esta tesis presenta múltiples contribuciones para el problema de manejo de memoria. Primero, se enfoca en el problema de optimizar los recursos de memoria en un servidor virtualizado a través de distintos tipos de abstracciones de memoria. Dos contribuciones son presentadas para administrar memoria de manera automática dentro de un servidor virtualizado, llamadas SmarTmem y CARLEMM. En este contexto, una tercera contribución es presentada, llamada CAVMem, que proporciona los fundamentos para el desarrollo de CARLEMM. Segundo, la tesis presenta dos contribuciones enfocadas en la agregación de capacidad de memoria a través de múltiples servidores, ofreciendo dos mecanismos llamados GV-Tmem y vMCA, siendo este último basado en GV-Tmem pero con mejoras significativas. Estos mecanismos administran la memoria total de un servidor a nivel local y de manera global a lo largo de los servidores de la infraestructura de nube utilizando un proceso de usuario que implementa políticas de manejo de ...Postprint (published version

    Virtualization techniques for memory resource exploitation

    Get PDF
    Cloud infrastructures have become indispensable in our daily lives with the rise of cloud-based services offered by companies like Facebook, Google, Amazon and many others. These cloud infrastructures use a large numbers of servers provisioned with their own computing resources. Each of these servers use a piece of software, called the Hypervisor (``HV''), that allows them to create multiple virtual instances of the server's physical computing resources and abstract them into "Virtual Machines'' (VMs). A VM runs an Operating System, which in turn runs the applications. The VMs within the servers generate varying memory demand behavior. When the demand increases, costly operations such as (virtual) disk accesses and/or VM migrations can occur. As a result, it is necessary to optimize the utilization of the local memory resources within a single computing server. However, pressure on the memory resources can still increase, making it necessary to migrate the VM to a different server with larger memory or add more memory to the same server. At this point, it is important to consider that some of the servers in the cloud infrastructure might have memory resources that they are not using. Considering the possibility to make memory available to the server, new architectures have been introduced that provide hardware support to enable servers to share their memory capacity. This thesis presents multiple contributions to the memory management problem. First, it addresses the problem of optimizing memory resources in a virtualized server through different types of memory abstractions. Two full contributions are presented for managing memory within a single server called SmarTmem and CARLEMM. In this respect, a third contribution is also presented, called CAVMem, that works as the foundation for CARLEMM. Second, this thesis presents two contributions for memory capacity aggregation across multiple servers, offering two mechanisms called GV-Tmem and vMCA, this latter being based on GV-Tmem but with significant enhancements. These mechanisms distribute the server's total memory within a single-server and globally across computing servers using a user-space process with high-level memory management policies.Las infraestructuras para la nube se han vuelto indispensables en nuestras vidas diarias con la proliferación de los servicios ofrecidos por compañías como Facebook, Google, Amazon entre otras. Estas infraestructuras utilizan una gran cantidad de servidores proveídos con sus propios recursos computacionales. Cada unos de estos servidores utilizan un software, llamado el Hipervisor (“HV”), que les permite crear múltiples instancias virtuales de los recursos físicos de computación del servidor y abstraerlos en “Máquinas Virtuales” (VMs). Una VM ejecuta un Sistema Operativo (OS), el cual a su vez ejecuta aplicaciones. Las VMs dentro de los servidores generan un comportamiento variable de demanda de memoria. Cuando la demanda de memoria aumenta, operaciones costosas como accesos al disco (virtual) y/o migraciones de VMs pueden ocurrir. Como resultado, es necesario optimizar la utilización de los recursos de memoria locales dentro del servidor. Sin embargo, la demanda por memoria puede seguir aumentando, haciendo necesario que la VM migre a otro servidor o que se añada más memoria al servidor. En este punto, es importante considerar que algunos servidores podrían tener recursos de memoria que no están utilizando. Considerando la posibilidad de hacer más memoria disponible a los servidores que lo necesitan, nuevas arquitecturas de servidores han sido introducidos que brindan el soporte de hardware necesario para habilitar que los servidores puedan compartir su capacidad de memoria. Esta tesis presenta múltiples contribuciones para el problema de manejo de memoria. Primero, se enfoca en el problema de optimizar los recursos de memoria en un servidor virtualizado a través de distintos tipos de abstracciones de memoria. Dos contribuciones son presentadas para administrar memoria de manera automática dentro de un servidor virtualizado, llamadas SmarTmem y CARLEMM. En este contexto, una tercera contribución es presentada, llamada CAVMem, que proporciona los fundamentos para el desarrollo de CARLEMM. Segundo, la tesis presenta dos contribuciones enfocadas en la agregación de capacidad de memoria a través de múltiples servidores, ofreciendo dos mecanismos llamados GV-Tmem y vMCA, siendo este último basado en GV-Tmem pero con mejoras significativas. Estos mecanismos administran la memoria total de un servidor a nivel local y de manera global a lo largo de los servidores de la infraestructura de nube utilizando un proceso de usuario que implementa políticas de manejo de ..
    corecore