1,033 research outputs found

    ESPOONERBAC_{{ERBAC}}: Enforcing Security Policies In Outsourced Environments

    Full text link
    Data outsourcing is a growing business model offering services to individuals and enterprises for processing and storing a huge amount of data. It is not only economical but also promises higher availability, scalability, and more effective quality of service than in-house solutions. Despite all its benefits, data outsourcing raises serious security concerns for preserving data confidentiality. There are solutions for preserving confidentiality of data while supporting search on the data stored in outsourced environments. However, such solutions do not support access policies to regulate access to a particular subset of the stored data. For complex user management, large enterprises employ Role-Based Access Controls (RBAC) models for making access decisions based on the role in which a user is active in. However, RBAC models cannot be deployed in outsourced environments as they rely on trusted infrastructure in order to regulate access to the data. The deployment of RBAC models may reveal private information about sensitive data they aim to protect. In this paper, we aim at filling this gap by proposing \textbf{ESPOONERBAC\mathit{ESPOON_{ERBAC}}} for enforcing RBAC policies in outsourced environments. ESPOONERBAC\mathit{ESPOON_{ERBAC}} enforces RBAC policies in an encrypted manner where a curious service provider may learn a very limited information about RBAC policies. We have implemented ESPOONERBAC\mathit{ESPOON_{ERBAC}} and provided its performance evaluation showing a limited overhead, thus confirming viability of our approach.Comment: The final version of this paper has been accepted for publication in Elsevier Computers & Security 2013. arXiv admin note: text overlap with arXiv:1306.482

    Dynamic deployment of context-aware access control policies for constrained security devices

    Get PDF
    Securing the access to a server, guaranteeing a certain level of protection over an encrypted communication channel, executing particular counter measures when attacks are detected are examples of security requirements. Such requirements are identi ed based on organizational purposes and expectations in terms of resource access and availability and also on system vulnerabilities and threats. All these requirements belong to the so-called security policy. Deploying the policy means enforcing, i.e., con guring, those security components and mechanisms so that the system behavior be nally the one speci ed by the policy. The deployment issue becomes more di cult as the growing organizational requirements and expectations generally leave behind the integration of new security functionalities in the information system: the information system will not always embed the necessary security functionalities for the proper deployment of contextual security requirements. To overcome this issue, our solution is based on a central entity approach which takes in charge unmanaged contextual requirements and dynamically redeploys the policy when context changes are detected by this central entity. We also present an improvement over the OrBAC (Organization-Based Access Control) model. Up to now, a controller based on a contextual OrBAC policy is passive, in the sense that it assumes policy evaluation triggered by access requests. Therefore, it does not allow reasoning about policy state evolution when actions occur. The modi cations introduced by our work overcome this limitation and provide a proactive version of the model by integrating concepts from action speci cation languages

    A Consent-based Workflow System for Healthcare Systems

    Get PDF
    In this paper, we describe a new framework for healthcare systems where patients are able to control the disclosure of their medical data. In our framework, the patient's consent has a pivotal role in granting or removing access rights to subjects accessing patient's medical data. Depending on the context in which the access is being executed, different consent policies can be applied. Context is expressed in terms of workflows. The execution of a task in a given workflow carries the necessary information to infer whether the consent can be implicitly retrieved or should be explicitly requested from a patient. However, patients are always able to enforce their own decisions and withdraw consent if necessary. Additionally, the use of workflows enables us to apply the need-to-know principle. Even when the patient's consent is obtained, a subject should access medical data only if it is required by the actual situation. For example, if the subject is assigned to the execution of a medical diagnosis workflow requiring access to the patient's medical record. We also provide a complex medical case study to highlight the design principles behind our framework. Finally, the implementation of the framework is outlined
    corecore