315 research outputs found

    A Novel Formulation of Economic Model Predictive Control for Periodic Operations

    Get PDF
    This paper proposes a novel formulation of economic model predictive control (MPC) for linear systems with periodic operations. In this economic MPC design, the optimal periodic trajectory from an economic point of view is unknown, hence it is not possible to follow a standard control strategy in which the MPC uses this trajectory to define a terminal constraint to guarantee closed-loop convergence. The economic cost function is optimized with a periodicity constraint at each time step considering all periodic trajectories in a period including the current state. The recursive feasibility and closed-loop convergence to the optimal periodic trajectory are analyzed using the Karush-Kuhn-Tucker conditions. Finally, two simulations are provided to demonstrate the main results.Agencia Estatal de Investigación DPI2013-48243-C2Agencia Estatal de Investigación DPI2016-76493- C3Ministerio de Ciencia, Innovación y Universidades MDM-2016-065

    Robust economic model predictive control: recursive feasibility, stability and average performance

    Get PDF
    This thesis is mainly concerned with designing algorithms for Economic Model Predictive Control (EMPC), and analysis of its resulting recursive feasibility, stability and asymptotic average performance. In particular, firstly, in order to extend and unify the formulation and analysis of economic model predictive control for general optimal operation regimes, including steady-state or periodic operation, we propose the novel concept of a “control storage function” and introduce upper and lower bounds to the best asymptotic average performance for nonlinear control systems based on suitable notions of dissipativity and controlled dissipativity. As a special case, when the optimal operation is periodic, we present a new approach to formulate terminal cost functions. Secondly, aiming at designing a robust EMPC controller for nonlinear systems with general optimal regimes of operation, we present a tube-based robust EMPC algorithm for discrete-time nonlinear systems that are perturbed by disturbance inputs. The proposed algorithm minimizes a modified economic objective function, which considers the worst cost within a tube around the solution of the associated nominal system. Recursive feasibility and an a-priori upper bound to the closed-loop asymptotic average performance are ensured. Thanks to the use of dissipativity of the nominal system with a suitable supply rate, the closed-loop system under the proposed controller is shown to be asymptotically stable, in the sense that it is driven to an optimal robust invariant set. Thirdly, for the purpose of combining robust EMPC design with a state observer in a single pure economic optimization problem, we consider homothetic tube-based EMPC synthesis for constrained linear discrete time systems. Since, in practical systems, full state measurement is seldom available, the proposed method integrates a moving horizon estimator to achieve closed-loop stability and constraint satisfaction despite system disturbances and output measurement noise. In contrast to existing approaches, the worst cost within a single homothetic tube around the solution of the associated nominal system is minimized, which at the same time tightens the bound on the set of potential states compatible with past output and input data. We show that the designed optimization problem is recursively feasible and adoption of homothetic tubes leads to less conservative economic performance bounds. In addition, the use of strict dissipativity of the nominal system guarantees asymptotic stability of the resulting closed-loop system. Finally, to deal with the unknown nonzero mean disturbance and the presence of plant-model error, we propose a novel economic MPC algorithm aiming at achieving optimal steady-state performance despite the presence of plant-model mismatch or unmeasured nonzero mean disturbances. According to the offset-free formulation, the system's state is augmented with disturbances and transformed into a new coordinate framework. Based on the new variables, the proposed controller integrates a moving horizon estimator to determine a solution of the nominal system surrounded by a set of potential states compatible with past input and output measurements. The worst cost within a single homothetic tube around the nominal solution is chosen as the economic objective function which is minimized to provide a tightened upper bound for the accumulated real cost within the prediction horizon window. Thanks to the combined use of the nominal system and homothetic tube, the designed optimization problem is recursively feasible and less conservative economic performance bounds are achieved.Open Acces

    Analysis and design of model predictive control frameworks for dynamic operation -- An overview

    Full text link
    This article provides an overview of model predictive control (MPC) frameworks for dynamic operation of nonlinear constrained systems. Dynamic operation is often an integral part of the control objective, ranging from tracking of reference signals to the general economic operation of a plant under online changing time-varying operating conditions. We focus on the particular challenges that arise when dealing with such more general control goals and present methods that have emerged in the literature to address these issues. The goal of this article is to present an overview of the state-of-the-art techniques, providing a diverse toolkit to apply and further develop MPC formulations that can handle the challenges intrinsic to dynamic operation. We also critically assess the applicability of the different research directions, discussing limitations and opportunities for further researc

    Model Predictive Control Applications to Spacecraft Rendezvous and Small Bodies Exploration

    Get PDF
    The overarching goal of this thesis is the design of model predictive control algorithms for spacecraft proximity operations. These include, but it is not limited to, spacecraft rendezvous, hovering phases or orbiting in the vicinity of small bodies. The main motivation behind this research is the increasing demand of autonomy, understood as the spacecraft capability to compute its own control plan, in current and future space operations. This push for autonomy is fostered by the recent introduction of disruptive technologies changing the traditional concept of space exploration and exploitation. The development of miniaturized satellite platforms and the drastic cost reduction in orbital access have boosted space activity to record levels. In the near future, it is envisioned that numerous artificial objects will simultaneously operate across the Solar System. In that context, human operators will be overwhelmed in the task of tracking and commanding each spacecraft in real time. As a consequence, developing intelligent and robust autonomous systems has been identified by several space agencies as a cornerstone technology. Inspired by the previous facts, this work presents novel controllers to tackle several scenarios related to spacecraft proximity operations. Mastering proximity operations enables a wide variety of space missions such as active debris removal, astronauts transportation, flight-formation applications, space stations resupply and the in-situ exploration of small bodies. Future applications may also include satellite inspection and servicing. This thesis has focused on four scenarios: six-degrees of freedom spacecraft rendezvous; near-rectilinear halo orbits rendezvous; the hovering phase; orbit-attitude station-keeping in the vicinity of a small body. The first problem aims to demonstrate rendezvous capabilities for a lightweight satellite with few thrusters and a reaction wheels array. For near-rectilinear halo orbits rendezvous, the goal is to achieve higher levels of constraints satisfaction than with a stateof- the-art predictive controller. In the hovering phase, the objective is to augment the control accuracy and computational efficiency of a recent global stable controller. The small body exploration aims to demonstrate the positive impact of model-learning in the control accuracy. Although based on model predictive control, the specific approach for each scenario differs. In six-degrees of freedom rendezvous, the attitude flatness property and the transition matrix for Keplerian-based relative are used to obtain a non-linear program. Then, the control loop is closed by linearizing the system around the previous solution. For near-rectilinear halo orbits rendezvous, the constraints are assured to be satisfied in the probabilistic sense by a chance-constrained approach. The disturbances statistical properties are estimated on-line. For the hovering phase problem, an aperiodic event-based predictive controller is designed. It uses a set of trigger rules, defined using reachability concepts, deciding when to execute a single-impulse control. In the small body exploration scenario, a novel learning-based model predictive controller is developed. This works by integrating unscented Kalman filtering and model predictive control. By doing so, the initially unknown small body inhomogeneous gravity field is estimated over time which augments the model predictive control accuracy.El objeto de esta tesis es el dise˜no de algoritmos de control predictivo basado en modelo para operaciones de veh´ıculos espaciales en proximidad. Esto incluye, pero no se limita, a la maniobra de rendezvous, las fases de hovering u orbitar alrededor de cuerpos menores. Esta tesis est´a motivada por la creciente demanda en la autonom´ıa, entendida como la capacidad de un veh´ıculo para calcular su propio plan de control, de las actuales y futuras misiones espaciales. Este inter´es en incrementar la autonom´ıa est´a relacionado con las actuales tecnolog´ıas disruptivas que est´an cambiando el concepto tradicional de exploraci´on y explotaci´on espacial. Estas son el desarrollo de plataformas satelitales miniaturizadas y la dr´astica reducci´on de los costes de puesta en ´orbita. Dichas tecnolog´ıas han impulsado la actividad espacial a niveles de record. En un futuro cercano, se prev´e que un gran n´umero de objetos artificiales operen de manera simult´anea a lo largo del Sistema Solar. Bajo dicho escenario, los operadores terrestres se ver´an desbordados en la tarea de monitorizar y controlar cada sat´elite en tiempo real. Es por ello que el desarrollo de sistemas aut´onomos inteligentes y robustos es considerado una tecnolog´ıa fundamental por diversas agencias espaciales. Debido a lo anterior, este trabajo presenta nuevos resultados en el control de operaciones de veh´ıculos espaciales en proximidad. Dominar dichas operaciones permite llevar a cabo una gran variedad de misiones espaciales como la retirada de basura espacial, transferir astronautas, aplicaciones de vuelo en formaci´on, reabastecer estaciones espaciales y la exploraci ´on de cuerpos menores. Futuras aplicaciones podr´ıan incluir operaciones de inspecci´on y mantenimiento de sat´elites. Esta tesis se centra en cuatro escenarios: rendezvous de sat´elites con seis grados de libertad; rendezvous en ´orbitas halo cuasi-rectil´ıneas; la fase de hovering; el mantenimiento de ´orbita y actitud en las inmendiaciones de un cuerpo menor. El primer caso trata de proveer capacidades de rendezvous para un sat´elite ligero con pocos propulsores y un conjunto de ruedas de reacci´on. Para el rendezvous en ´orbitas halo cuasi-rectil´ıneas, se intenta aumentar el grado de cumplimiento de restricciones con respecto a un controlador predictivo actual. Para la fase de hovering, se mejora la precisi´on y eficiencia computacional de un controlador globalmente estable. En la exploraci´on de un cuerpo menor, se pretende demostrar el mayor grado de precisi´on que se obtiene al aprender el modelo. Siendo la base el control predictivo basado en modelo, el enfoque espec´ıfico difiere para cada escenario. En el rendezvous con seis grados de libertad, se obtiene un programa no-lineal con el uso de la propiedad flatness de la actitud y la matriz de transici´on del movimiento relativo Kepleriano. El bucle de control se cierra linealizando en torno a la soluci´on anterior. Para el rendezvous en ´orbitas halo cuasi-rectil´ıneas, el cumplimiento de restricciones se garantiza probabil´ısticamente mediante la t´ecnica chance-constrained. Las propiedades estad´ısticas de las perturbaciones son estimadas on-line. En la fase de hovering, se usa el control predictivo basado en eventos. Ello consiste en unas reglas de activaci´on, definidas con conceptos de accesibilidad, que deciden la ejecuci´on de un ´unico impulso de control. En la exploraci´on de cuerpos menores, se desarrolla un controlador predictivo basado en el aprendizaje del modelo. Funciona integrando un filtro de Kalman con control predictivo basado en modelo. Con ello, se consigue estimar las inomogeneidades del campo gravitario lo que repercute en una mayor precisi´on del controlador predictivo basado en modelo

    Advances in the understanding of Kohn-Sham DFT via the optimised effective potential method

    Get PDF
    Kohn-Sham (KS) density functional theory (DFT) has paved its way to becoming the most widely used method for performing electronic structure calculations. Its major success relies heavily on the underlying approximations that are employed to describe the exchange-correlation (xc) energy functional; hence understanding these approximations proves to be of vital importance. The main goal of this thesis is to explore and develop a deeper understanding of approximations made within DFT; with a focus on systematically improving existing (semi-)local density functional approximations (DFAs). To do so, we build upon the existing constrained minimisation method, which requires the optimised effective potential (OEP) scheme, improving its implementation and removing one of its major computational bottlenecks. This thesis also addresses a long-standing question in the field as to why the KS equations of spin-DFT do not reduce to those of DFT in the limit of zero applied magnetic field. A new OEP scheme is derived to construct DFT approximations that yield near spin-DFT accuracy and correct for a systematic error in the exchange energy for open-shell systems. This work is then extended to ensemble systems of varying electron number, where it is shown that (semi-)local approximations can yield non-zero xc derivative discontinuities; an exotic, non-analytic feature of the exact KS potential. Building on these new OEP formulations, a novel new method for decomposing the molecular screening density into screening densities localised on individual atoms is introduced. This method is shown to yield the predicted but elusive steps in the xc potential as a diatomic dissociates; a very exciting result given that these steps cannot be captured at all from any DFT so far, let alone a (semi-)local DFA

    Large space structures and systems in the space station era: A bibliography with indexes

    Get PDF
    Bibliographies and abstracts are listed for 1372 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1990 and June 30, 1990. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 03)

    Get PDF
    Bibliographies and abstracts are listed for 1221 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and June 30, 1991. Topics covered include large space structures and systems, space stations, extravehicular activity, thermal environments and control, tethering, spacecraft power supplies, structural concepts and control systems, electronics, advanced materials, propulsion, policies and international cooperation, vibration and dynamic controls, robotics and remote operations, data and communication systems, electric power generation, space commercialization, orbital transfer, and human factors engineering

    Robust and adaptive control strategies for closed-loop climate engineering

    Get PDF
    Climate engineering aims to offset human-driven climate change through engineering interventions. This thesis focuses on the deployment of Solar Radiation Management (SRM) methods which aim to counteract radiative forcing generated by the concentration of atmospheric CO2. The climate system is investigated as a closed-loop control problem with uncertainties in its dynamics mitigated by robust and adaptive control strategies. Indeed, an adaptive controller for climate engineering is presented for the first time in a multi-variable control scheme. A low order three-box energy model is developed for the climate system to investigate such adaptive control strategies. Climate engineering measures are then deployed in 3 boxes, thus representing northern, southern and central (equatorial) bands. It is demonstrated that, through the on-line estimation of the controller parameters, adaptive control can overcome key-issues related to uncertainties of the climate model, external radiative forcing and actuator dynamics. The use of adaptive control provides a robust means of dealing with unforeseeable abrupt perturbations and the parametrisation of the model considered, while still providing bounds on stability and control performance. Importantly, the convergence of the controller is guaranteed through the Lyapunov stability criterion. Moreover, an analytical model describing the main latitudinal dynamics of the Earth’s climate with closed-loop control has been developed. This model has analytical solution and allows for quick evaluations of non-uniform climate engineering strategies. Multi-objective analyses are considered and analytical expressions for control laws with latitudinal resolution are obtained in several scenarios. Results are broadly comparable with the literature, demonstrating model’s utility in rapidly assessing climate engineering controls laws. Using the PDE model, ice line dynamics are investigated and a Lyapunov stability analysis is employed to estimate the maximum insolation reduction before the current climate falls into an ice-covered state. This provides an extreme operational boundary for future climate engineering ventures. Finally, the PDE model is employed to investigate strategies involving the deployment of space shields. The grade of obscuration provided at each latitude is estimated and an optimization process performed in order to minimize the shield size and to find the ideal orbit to counteract 2xCO2 concentration
    corecore