4 research outputs found

    A New Cryptosystem Based On Hidden Order Groups

    Get PDF
    Let G1G_1 be a cyclic multiplicative group of order nn. It is known that the Diffie-Hellman problem is random self-reducible in G1G_1 with respect to a fixed generator gg if ϕ(n)\phi(n) is known. That is, given g,gx∈G1g, g^x\in G_1 and having oracle access to a `Diffie-Hellman Problem' solver with fixed generator gg, it is possible to compute g1/x∈G1g^{1/x} \in G_1 in polynomial time (see theorem 3.2). On the other hand, it is not known if such a reduction exists when ϕ(n)\phi(n) is unknown (see conjuncture 3.1). We exploit this ``gap'' to construct a cryptosystem based on hidden order groups and present a practical implementation of a novel cryptographic primitive called an \emph{Oracle Strong Associative One-Way Function} (O-SAOWF). O-SAOWFs have applications in multiparty protocols. We demonstrate this by presenting a key agreement protocol for dynamic ad-hoc groups.Comment: removed examples for multiparty key agreement and join protocols, since they are redundan

    Enforcing and defying associativity, commutativity, totality, and strong noninvertibility for one-way functions in complexity theory

    No full text
    Rabi and Sherman [RS97,RS93] proved that the hardness of factoring is a sufficient condition for there to exist one-way functions (i.e., p-time computable, honest, p-time noninvertible functions) that are total, commutative, and associative but not strongly noninvertible. In this paper we improve the sufficient condition to P = NP. More generally, in this paper we completely characterize which types of one-way functions stand or fall together with (plain) one-way functions—equivalently, stand or fall together with P = NP. We look at the four attributes used in Rabi and Sherman’s seminal work on algebraic properties of one-way functions (see [RS97,RS93]) and subsequent papers—strongness (of noninvertibility), totality, commutativity, and associativity—and for each attribute, we allow it to be required to hold, required to fail, or “don’t care. ” In this categorization there are 3 4 = 81 potential types of one-way functions. We prove that each of these 81 feature-laden types stand or fall together with the existence of (plain) one-way functions. Key words: computational complexity, complexity-theoretic one-way functions, associativity, 1.
    corecore