56 research outputs found

    Symbolic Abstract Heaps for Polymorphic Information-flow Guard Inference (Extended Version)

    Full text link
    In the realm of sound object-oriented program analyses for information-flow control, very few approaches adopt flow-sensitive abstractions of the heap that enable a precise modeling of implicit flows. To tackle this challenge, we advance a new symbolic abstraction approach for modeling the heap in Java-like programs. We use a store-less representation that is parameterized with a family of relations among references to offer various levels of precision based on user preferences. This enables us to automatically infer polymorphic information-flow guards for methods via a co-reachability analysis of a symbolic finite-state system. We instantiate the heap abstraction with three different families of relations. We prove the soundness of our approach and compare the precision and scalability obtained with each instantiated heap domain by using the IFSpec benchmarks and real-life applications

    A Cut Principle for Information Flow

    Full text link
    We view a distributed system as a graph of active locations with unidirectional channels between them, through which they pass messages. In this context, the graph structure of a system constrains the propagation of information through it. Suppose a set of channels is a cut set between an information source and a potential sink. We prove that, if there is no disclosure from the source to the cut set, then there can be no disclosure to the sink. We introduce a new formalization of partial disclosure, called *blur operators*, and show that the same cut property is preserved for disclosure to within a blur operator. This cut-blur property also implies a compositional principle, which ensures limited disclosure for a class of systems that differ only beyond the cut.Comment: 31 page

    CoCon: A conference management system with formally verified document confidentiality

    Get PDF
    We present a case study in formally verified security for realistic systems: the information flow security verification of the functional kernel of a web application, the CoCon conference management system. We use the Isabelle theorem prover to specify and verify fine-grained confidentiality properties, as well as complementary safety and “traceback” properties. The challenges posed by this development in terms of expressiveness have led to bounded-deducibility security, a novel security model and verification method generally applicable to systems describable as input/output automata

    Flexible Information-Flow Control

    Get PDF
    As more and more sensitive data is handled by software, its trustworthinessbecomes an increasingly important concern. This thesis presents work on ensuringthat information processed by computing systems is not disclosed to thirdparties without the user\u27s permission; i.e. to prevent unwanted flows ofinformation. While this problem is widely studied, proposed rigorousinformation-flow control approaches that enforce strong securityproperties like noninterference have yet to see widespread practical use.Conversely, lightweight techniques such as taint tracking are more prevalent inpractice, but lack formal underpinnings, making it unclear what guarantees theyprovide.This thesis aims to shrink the gap between heavyweight information-flow controlapproaches that have been proven sound and lightweight practical techniqueswithout formal guarantees such as taint tracking. This thesis attempts toreconcile these areas by (a) providing formal foundations to taint trackingapproaches, (b) extending information-flow control techniques to more realisticlanguages and settings, and (c) exploring security policies and mechanisms thatfall in between information-flow control and taint tracking and investigating whattrade-offs they incur

    A Methodology For Micro-Policies

    Get PDF
    This thesis proposes a formal methodology for defining, specifying, and reasoning about micro-policies — security policies based on fine-grained tagging that include forms of access control, memory safety, compartmentalization, and information-flow control. Our methodology is based on a symbolic machine that extends a conventional RISC-like architecture with tags. Tags express security properties of parts of the program state ( this is an instruction, this is secret, etc.), and are checked and propagated on every instruction according to flexible user-supplied rules. We apply this methodology to two widely studied policies, information-flow control and heap memory safety, implementing them with the symbolic machine and formally characterizing their security guarantees: for information-flow control, we prove a classic notion of termination-insensitive noninterference; for memory safety, a novel property that protects memory regions that a program cannot validly reach through the pointers it possesses — which, we believe, provides a useful criterion for evaluating and comparing different flavors of memory safety. We show how the symbolic machine can be realized with a more practical processor design, where a software monitor takes advantage of a hardware cache to speed up its execution while protecting itself from potentially malicious user-level code. Our development has been formalized and verified in the Coq proof assistant, attesting that our methodology can provide rigorous security guarantees

    CEEME: compensating events based execution monitoring enforcement for Cyber-Physical Systems

    Get PDF
    Fundamentally, inherently observable events in Cyber-Physical Systems with tight coupling between cyber and physical components can result in a confidentiality violation. By observing how the physical elements react to cyber commands, adversaries can identify critical links in the system and force the cyber control algorithm to make erroneous decisions. Thus, there is a propensity for a breach in confidentiality leading to further attacks on availability or integrity. Due to the highly integrated nature of Cyber-Physical Systems, it is also extremely difficult to map the system semantics into a security framework under existing security models. The far-reaching objective of this research is to develop a science of selfobfuscating systems based on the composition of simple building blocks. A model of Nondeducibility composes the building blocks under Information Flow Security Properties. To this end, this work presents fundamental theories on external observability for basic regular networks and the novel concept of event compensation that can enforce Information Flow Security Properties at runtime --Abstract, page iii

    CoCon: A conference management system with formally verified document confidentiality

    Get PDF
    We present a case study in formally verified security for realistic systems: the information flow security verification of the functional kernel of a web application, the CoCon conference management system. We use the Isabelle theorem prover to specify and verify fine-grained confidentiality properties, as well as complementary safety and “traceback” properties. The challenges posed by this development in terms of expressiveness have led to bounded-deducibility security, a novel security model and verification method generally applicable to systems describable as input/output automata

    A temporal logic approach to information-flow control

    Get PDF
    Information leaks and other violations of information security pose a severe threat to individuals, companies, and even countries. The mechanisms by which attackers threaten information security are diverse and to show their absence thus proved to be a challenging problem. Information-flow control is a principled approach to prevent security incidents in programs and other technical systems. In information-flow control we define information-flow properties, which are sufficient conditions for when the system is secure in a particular attack scenario. By defining the information-flow property only based on what parts of the executions of the system a potential attacker can observe or control, we obtain security guarantees that are independent of implementation details and thus easy to understand. There are several methods available to enforce (or verify) information-flow properties once defined. We focus on static enforcement methods, which automatically determine whether a given system satisfies a given information-flow property for all possible inputs to the system. Most enforcement approaches that are available today have one problem in common: they each only work for one particular programming language or information-flow property. In this thesis, we propose a temporal logic approach to information-flow control to provide a simple formal basis for the specification and enforcement of information-flow properties. We show that the approach can be used to enforce a wide range of information-flow properties with a single algorithm. The main challenge is that the standard temporal logics are unable to express information-flow properties. They lack the ability to relate multiple executions of a system, which is essential for information-flow properties. We thus extend the temporal logics LTL and CTL* by the ability to quantify over multiple executions and to relate them using boolean and temporal operators. The resulting temporal logics HyperLTL and HyperCTL* can express many information-flow properties of interest. The extension of temporal logics com- pels us to revisit the algorithmic problem to check whether a given system (model) satisfies a given specification in HyperLTL or HyperCTL*; also called the model checking problem. On the technical side, the main contribution is a model checking algorithm for HyperLTL and HyperCTL* and the detailed complexity analysis of the model checking problem: We give nonelementary lower and upper bounds for its computational complexity, both in the size of the system and the size of the specification. The complexity analysis also reveals a class of specification, which includes many of the commonly consid- ered information-flow properties and for which the algorithm is efficient (in NLOGSPACE in the size of the system). For this class of efficiently checkable properties, we provide an approach to reuse existing technology in hardware model checking for information-flow control. We demonstrate along a case study that the temporal logic approach to information-flow control is flexible and effective. We further provide two case studies that demonstrate the use of HyperLTL and HyperCTL* for proving properties of error resistant codes and distributed protocols that have so far only been considered in manual proofs.Informationssicherheit stellt eine immer größere Bedrohung für einzelne Personen, Firmen und selbst ganze Länder dar. Ein grundlegender Ansatz zur Vorbeugung von Sicherheitsproblemen in technischen Systemen, wie zum Beispiel Programmen, ist Informationsflusskontrolle. In der Informationsflusskontrolle definieren wir zunächst sogenannte Informationsflusseigenschaften, welche hinreichende Bedingungen für die Sicherheit des gegebenen Systems in einem Sicherheitsszenario darstellen. Indem wir Informationsflusseigenschaften nur auf Basis der möglichen Beobachtungen eines Angreifers über das System definieren, erhalten wir einfach zu verstehende Sicherheitsgarantien, die unabhängig von Implementierungsdetails sind. Nach der Definition von Eigenschaften muss sichergestellt werden, dass ein gegebenes System seine Informationsflusseigenschaft erfüllt, wofür es bereits verschiedene Methoden gibt. Wir fokussieren uns in dieser Arbeit auf statische Methoden, welche für ein gegebenes System und eine gegebene Informationsflusseigenschaft automatisch entscheiden, ob das System die Eigenschaft für alle möglichen Eingaben erfüllt, was wir auch das Modellprüfungsproblem nennen. Die meisten verfügbaren Methoden zum Sicherstellen der Einhaltung von Informationsflusseigenschaften teilen jedoch eine Schwäche: sie funktionieren nur für eine einzelne Programmiersprache oder eine einzelne Informationsflusseigenschaft. In dieser Arbeit verfolgen wir einen Ansatz basierend auf Temporallogiken, um eine einfache theoretische Basis für die Spezifikation von Informationsflusseigenschaften und deren Umsetzung zu erhalten. Wir analysieren den Zusammenhang von der Ausdrucksmächtigkeit von Spezifikationssprachen und dem algorithmischen Problem Spezifikationen für ein System zu überprüfen. Anhand einer Fallstudie im Bereich der Hardwaresicherheit zeigen wir, dass der Ansatz dazu geeignet ist eine breite Palette von bekannten und neuen Informationsflusseigenschaften mittels eines einzelnen Modellprüfungsalgorithmus zu beweisen. Das Kernproblem hierbei ist, dass wir in den üblichen Temporallogiken Informationsflusseigenschaften nicht ausdrücken können, es fehlt die Fähigkeit mehrere Ausführungen eines Systems miteinander zu vergleichen, was der gemeinsame Nenner von Informationsflusseigenschaften ist. Wir erweitern Temporallogiken daher um die Fähigkeit über mehrere Ausführungen zu quantifizieren und diese miteinander zu vergleichen. Der Hauptbeitrag auf der technischen Ebene ist ein Modellprüfungsalgorithmus und eine detaillierte Analyse der Komplexität des Modellprüfungsproblems. Wir geben einen Modellprüfungsalgorithmus an und beweisen, dass der Algorithmus asymptotisch optimal ist. Die Komplexitätsanalyse zeigt auch eine Klasse von Eigenschaften auf, welche viele der üblichen Informationsflusseigenschaften beinhaltet, und für welche der gegebene Algorithmus effizient ist (in NLOGSPACE in der Größe des Systems). Für diese Klasse von effizient überprüfbaren Eigenschaften diskutieren wir einen Ansatz bestehende Technologie zur Modellprüfung von Hardware für Informationsflusskontrolle wiederzuverwenden. Anhand einer Fallstudie zeigen wir, dass der Ansatz flexibel und effektiv eingesetzt werden kann. Desweiteren diskutieren wir zwei weitere Fallstudien, welche demonstrieren, dass die vorgeschlagene Erweiterung von Temporallogiken auch eingesetzt werden kann, um Eigenschaften für fehlerresistente Kodierungen und verteilte Protokolle zu beweisen, welche bisher nur Abstrakt betrachtet werden konnten

    A temporal logic approach to information-flow control

    Get PDF
    Information leaks and other violations of information security pose a severe threat to individuals, companies, and even countries. The mechanisms by which attackers threaten information security are diverse and to show their absence thus proved to be a challenging problem. Information-flow control is a principled approach to prevent security incidents in programs and other technical systems. In information-flow control we define information-flow properties, which are sufficient conditions for when the system is secure in a particular attack scenario. By defining the information-flow property only based on what parts of the executions of the system a potential attacker can observe or control, we obtain security guarantees that are independent of implementation details and thus easy to understand. There are several methods available to enforce (or verify) information-flow properties once defined. We focus on static enforcement methods, which automatically determine whether a given system satisfies a given information-flow property for all possible inputs to the system. Most enforcement approaches that are available today have one problem in common: they each only work for one particular programming language or information-flow property. In this thesis, we propose a temporal logic approach to information-flow control to provide a simple formal basis for the specification and enforcement of information-flow properties. We show that the approach can be used to enforce a wide range of information-flow properties with a single algorithm. The main challenge is that the standard temporal logics are unable to express information-flow properties. They lack the ability to relate multiple executions of a system, which is essential for information-flow properties. We thus extend the temporal logics LTL and CTL* by the ability to quantify over multiple executions and to relate them using boolean and temporal operators. The resulting temporal logics HyperLTL and HyperCTL* can express many information-flow properties of interest. The extension of temporal logics com- pels us to revisit the algorithmic problem to check whether a given system (model) satisfies a given specification in HyperLTL or HyperCTL*; also called the model checking problem. On the technical side, the main contribution is a model checking algorithm for HyperLTL and HyperCTL* and the detailed complexity analysis of the model checking problem: We give nonelementary lower and upper bounds for its computational complexity, both in the size of the system and the size of the specification. The complexity analysis also reveals a class of specification, which includes many of the commonly consid- ered information-flow properties and for which the algorithm is efficient (in NLOGSPACE in the size of the system). For this class of efficiently checkable properties, we provide an approach to reuse existing technology in hardware model checking for information-flow control. We demonstrate along a case study that the temporal logic approach to information-flow control is flexible and effective. We further provide two case studies that demonstrate the use of HyperLTL and HyperCTL* for proving properties of error resistant codes and distributed protocols that have so far only been considered in manual proofs.Informationssicherheit stellt eine immer größere Bedrohung für einzelne Personen, Firmen und selbst ganze Länder dar. Ein grundlegender Ansatz zur Vorbeugung von Sicherheitsproblemen in technischen Systemen, wie zum Beispiel Programmen, ist Informationsflusskontrolle. In der Informationsflusskontrolle definieren wir zunächst sogenannte Informationsflusseigenschaften, welche hinreichende Bedingungen für die Sicherheit des gegebenen Systems in einem Sicherheitsszenario darstellen. Indem wir Informationsflusseigenschaften nur auf Basis der möglichen Beobachtungen eines Angreifers über das System definieren, erhalten wir einfach zu verstehende Sicherheitsgarantien, die unabhängig von Implementierungsdetails sind. Nach der Definition von Eigenschaften muss sichergestellt werden, dass ein gegebenes System seine Informationsflusseigenschaft erfüllt, wofür es bereits verschiedene Methoden gibt. Wir fokussieren uns in dieser Arbeit auf statische Methoden, welche für ein gegebenes System und eine gegebene Informationsflusseigenschaft automatisch entscheiden, ob das System die Eigenschaft für alle möglichen Eingaben erfüllt, was wir auch das Modellprüfungsproblem nennen. Die meisten verfügbaren Methoden zum Sicherstellen der Einhaltung von Informationsflusseigenschaften teilen jedoch eine Schwäche: sie funktionieren nur für eine einzelne Programmiersprache oder eine einzelne Informationsflusseigenschaft. In dieser Arbeit verfolgen wir einen Ansatz basierend auf Temporallogiken, um eine einfache theoretische Basis für die Spezifikation von Informationsflusseigenschaften und deren Umsetzung zu erhalten. Wir analysieren den Zusammenhang von der Ausdrucksmächtigkeit von Spezifikationssprachen und dem algorithmischen Problem Spezifikationen für ein System zu überprüfen. Anhand einer Fallstudie im Bereich der Hardwaresicherheit zeigen wir, dass der Ansatz dazu geeignet ist eine breite Palette von bekannten und neuen Informationsflusseigenschaften mittels eines einzelnen Modellprüfungsalgorithmus zu beweisen. Das Kernproblem hierbei ist, dass wir in den üblichen Temporallogiken Informationsflusseigenschaften nicht ausdrücken können, es fehlt die Fähigkeit mehrere Ausführungen eines Systems miteinander zu vergleichen, was der gemeinsame Nenner von Informationsflusseigenschaften ist. Wir erweitern Temporallogiken daher um die Fähigkeit über mehrere Ausführungen zu quantifizieren und diese miteinander zu vergleichen. Der Hauptbeitrag auf der technischen Ebene ist ein Modellprüfungsalgorithmus und eine detaillierte Analyse der Komplexität des Modellprüfungsproblems. Wir geben einen Modellprüfungsalgorithmus an und beweisen, dass der Algorithmus asymptotisch optimal ist. Die Komplexitätsanalyse zeigt auch eine Klasse von Eigenschaften auf, welche viele der üblichen Informationsflusseigenschaften beinhaltet, und für welche der gegebene Algorithmus effizient ist (in NLOGSPACE in der Größe des Systems). Für diese Klasse von effizient überprüfbaren Eigenschaften diskutieren wir einen Ansatz bestehende Technologie zur Modellprüfung von Hardware für Informationsflusskontrolle wiederzuverwenden. Anhand einer Fallstudie zeigen wir, dass der Ansatz flexibel und effektiv eingesetzt werden kann. Desweiteren diskutieren wir zwei weitere Fallstudien, welche demonstrieren, dass die vorgeschlagene Erweiterung von Temporallogiken auch eingesetzt werden kann, um Eigenschaften für fehlerresistente Kodierungen und verteilte Protokolle zu beweisen, welche bisher nur Abstrakt betrachtet werden konnten
    corecore