6,378 research outputs found

    Enforcing Privacy in Decentralized Mobile Social Networks

    Get PDF
    International audienceThis position paper first summarizes work done by the first author on location privacy and differential privacy. These techniques will help to solve privacy problems in decentralized mobile social networks, which is the main theme of his PhD research. The paper then briefly reviews the state-of-the-art in privacy-preservation of social graphs and clarifies the lack of attention to graph sharing in decentralized setting. Finally, some initial ideas on how to realize such soft decentralized access controls are described

    Enforcing Privacy in Decentralized Mobile Social Networks

    Get PDF
    International audienceThis position paper first summarizes work done by the first author on location privacy and differential privacy. These techniques will help to solve privacy problems in decentralized mobile social networks, which is the main theme of his PhD research. The paper then briefly reviews the state-of-the-art in privacy-preservation of social graphs and clarifies the lack of attention to graph sharing in decentralized setting. Finally, some initial ideas on how to realize such soft decentralized access controls are described

    Enabling Social Applications via Decentralized Social Data Management

    Full text link
    An unprecedented information wealth produced by online social networks, further augmented by location/collocation data, is currently fragmented across different proprietary services. Combined, it can accurately represent the social world and enable novel socially-aware applications. We present Prometheus, a socially-aware peer-to-peer service that collects social information from multiple sources into a multigraph managed in a decentralized fashion on user-contributed nodes, and exposes it through an interface implementing non-trivial social inferences while complying with user-defined access policies. Simulations and experiments on PlanetLab with emulated application workloads show the system exhibits good end-to-end response time, low communication overhead and resilience to malicious attacks.Comment: 27 pages, single ACM column, 9 figures, accepted in Special Issue of Foundations of Social Computing, ACM Transactions on Internet Technolog

    WARP: A ICN architecture for social data

    Full text link
    Social network companies maintain complete visibility and ownership of the data they store. However users should be able to maintain full control over their content. For this purpose, we propose WARP, an architecture based upon Information-Centric Networking (ICN) designs, which expands the scope of the ICN architecture beyond media distribution, to provide data control in social networks. The benefit of our solution lies in the lightweight nature of the protocol and in its layered design. With WARP, data distribution and access policies are enforced on the user side. Data can still be replicated in an ICN fashion but we introduce control channels, named \textit{thread updates}, which ensures that the access to the data is always updated to the latest control policy. WARP decentralizes the social network but still offers APIs so that social network providers can build products and business models on top of WARP. Social applications run directly on the user's device and store their data on the user's \textit{butler} that takes care of encryption and distribution. Moreover, users can still rely on third parties to have high-availability without renouncing their privacy

    Enforcement in Dynamic Spectrum Access Systems

    Get PDF
    The spectrum access rights granted by the Federal government to spectrum users come with the expectation of protection from harmful interference. As a consequence of the growth of wireless demand and services of all types, technical progress enabling smart agile radio networks, and on-going spectrum management reform, there is both a need and opportunity to use and share spectrum more intensively and dynamically. A key element of any framework for managing harmful interference is the mechanism for enforcement of those rights. Since the rights to use spectrum and to protection from harmful interference vary by band (licensed/unlicensed, legacy/newly reformed) and type of use/users (primary/secondary, overlay/underlay), it is reasonable to expect that the enforcement mechanisms may need to vary as well.\ud \ud In this paper, we present a taxonomy for evaluating alternative mechanisms for enforcing interference protection for spectrum usage rights, with special attention to the potential changes that may be expected from wider deployment of Dynamic Spectrum Access (DSA) systems. Our exploration of how the design of the enforcement regime interacts with and influences the incentives of radio operators under different rights regimes and market scenarios is intended to assist in refining thinking about appropriate access rights regimes and how best to incentivize investment and growth in more efficient and valuable uses of the radio frequency spectrum

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems
    • …
    corecore