520 research outputs found

    QoS-aware architectures, technologies, and middleware for the cloud continuum

    Get PDF
    The recent trend of moving Cloud Computing capabilities to the Edge of the network is reshaping how applications and their middleware supports are designed, deployed, and operated. This new model envisions a continuum of virtual resources between the traditional cloud and the network edge, which is potentially more suitable to meet the heterogeneous Quality of Service (QoS) requirements of diverse application domains and next-generation applications. Several classes of advanced Internet of Things (IoT) applications, e.g., in the industrial manufacturing domain, are expected to serve a wide range of applications with heterogeneous QoS requirements and call for QoS management systems to guarantee/control performance indicators, even in the presence of real-world factors such as limited bandwidth and concurrent virtual resource utilization. The present dissertation proposes a comprehensive QoS-aware architecture that addresses the challenges of integrating cloud infrastructure with edge nodes in IoT applications. The architecture provides end-to-end QoS support by incorporating several components for managing physical and virtual resources. The proposed architecture features: i) a multilevel middleware for resolving the convergence between Operational Technology (OT) and Information Technology (IT), ii) an end-to-end QoS management approach compliant with the Time-Sensitive Networking (TSN) standard, iii) new approaches for virtualized network environments, such as running TSN-based applications under Ultra-low Latency (ULL) constraints in virtual and 5G environments, and iv) an accelerated and deterministic container overlay network architecture. Additionally, the QoS-aware architecture includes two novel middlewares: i) a middleware that transparently integrates multiple acceleration technologies in heterogeneous Edge contexts and ii) a QoS-aware middleware for Serverless platforms that leverages coordination of various QoS mechanisms and virtualized Function-as-a-Service (FaaS) invocation stack to manage end-to-end QoS metrics. Finally, all architecture components were tested and evaluated by leveraging realistic testbeds, demonstrating the efficacy of the proposed solutions

    Modern meat: the next generation of meat from cells

    Get PDF
    Modern Meat is the first textbook on cultivated meat, with contributions from over 100 experts within the cultivated meat community. The Sections of Modern Meat comprise 5 broad categories of cultivated meat: Context, Impact, Science, Society, and World. The 19 chapters of Modern Meat, spread across these 5 sections, provide detailed entries on cultivated meat. They extensively tour a range of topics including the impact of cultivated meat on humans and animals, the bioprocess of cultivated meat production, how cultivated meat may become a food option in Space and on Mars, and how cultivated meat may impact the economy, culture, and tradition of Asia

    On the creation of a secure key enclave via the use of memory isolation in systems management mode

    Get PDF
    One of the challenges of modern cloud computer security is how to isolate or contain data and applications in a variety of ways, while still allowing sharing where desirable. Hardware-based attacks such as RowHammer and Spectre have demonstrated the need to safeguard the cryptographic operations and keys from tampering upon which so much current security technology depends. This paper describes research into security mechanisms for protecting sensitive areas of memory from tampering or intrusion using the facilities of Systems Management Mode. The work focuses on the creation of a small, dedicated area of memory in which to perform cryptographic operations, isolated from the rest of the system. The approach has been experimentally validated by a case study involving the creation of a secure webserver whose encryption key is protected using this approach such that even an intruder with full Administrator level access cannot extract the key

    ORC: Increasing cloud memory density via object reuse with capabilities

    Get PDF
    Cloud environments host many tenants, and typically there is substantial overlap between the application binaries and libraries executed by tenants. Thus, memory de-duplication can increase memory density by allocating memory for shared binaries only once. Existing de-duplication approaches, however, either rely on a shared OS to de-deduplicate binary objects, which provides unacceptably weak isolation; or exploit hypervisor-based de-duplication at the level of memory pages, which is blind to the semantics of the objects to be shared. We describe Object Reuse with Capabilities (ORC), which supports the fine-grained sharing of binary objects between tenants, while isolating tenants strongly through a small trusted computing base (TCB). ORC uses hardware sup- port for memory capabilities to isolate tenants, which permits shared objects to be accessible to multiple tenants safely. Since ORC shares binary objects within a single address space through capabilities, it uses a new relocation type to create per-tenant state when loading shared objects. ORC supports the loading of objects by an untrusted guest, outside of its TCB, only verifying the safety of the loaded data. Our experiments show that ORC achieves a higher memory density with a lower overhead than hypervisor-based de-deduplication

    On the creation of a secure key enclave via the use of memory isolation in systems management mode

    Get PDF
    One of the challenges of modern cloud computer security is how to isolate or contain data and applications in a variety of ways, while still allowing sharing where desirable. Hardware-based attacks such as RowHammer and Spectre have demonstrated the need to safeguard the cryptographic operations and keys from tampering upon which so much current security technology depends. This paper describes research into security mechanisms for protecting sensitive areas of memory from tampering or intrusion using the facilities of Systems Management Mode. The work focuses on the creation of a small, dedicated area of memory in which to perform cryptographic operations, isolated from the rest of the system. The approach has been experimentally validated by a case study involving the creation of a secure webserver whose encryption key is protected using this approach such that even an intruder with full Administrator level access cannot extract the key

    A Query, a Minute: Evaluating Performance Isolation in Cloud Databases

    Get PDF
    Several cloud providers offer reltional databases as part of their portfolio. It is however not obvious how resource virtualization and sharing, which is inherent to cloud computing, influence performance and predictability of these cloud databases. Cloud providers give little to no guarantees for consistent execution or isolation from other users. To evaluate the performance isolation capabilities of two commercial cloud databases, we ran a series of experiments over the course of a week (a query, a minute) and report variations in query response times. As a baseline, we ran the same experiments on a dedicated server in our data center. The results show that in the cloud single outliers are up to 31 times slower than the average. Additionally, one can see a point in time after which the average performance of all executed queries improves by 38 %
    • …
    corecore