1,522 research outputs found

    Privacy in an Ambient World

    Get PDF
    Privacy is a prime concern in today's information society. To protect\ud the privacy of individuals, enterprises must follow certain privacy practices, while\ud collecting or processing personal data. In this chapter we look at the setting where an\ud enterprise collects private data on its website, processes it inside the enterprise and\ud shares it with partner enterprises. In particular, we analyse three different privacy\ud systems that can be used in the different stages of this lifecycle. One of them is the\ud Audit Logic, recently introduced, which can be used to keep data private when it\ud travels across enterprise boundaries. We conclude with an analysis of the features\ud and shortcomings of these systems

    Supporting security-oriented, collaborative nanoCMOS electronics research

    Get PDF
    Grid technologies support collaborative e-Research typified by multiple institutions and resources seamlessly shared to tackle common research problems. The rules for collaboration and resource sharing are commonly achieved through establishment and management of virtual organizations (VOs) where policies on access and usage of resources by collaborators are defined and enforced by sites involved in the collaboration. The expression and enforcement of these rules is made through access control systems where roles/privileges are defined and associated with individuals as digitally signed attribute certificates which collaborating sites then use to authorize access to resources. Key to this approach is that the roles are assigned to the right individuals in the VO; the attribute certificates are only presented to the appropriate resources in the VO; it is transparent to the end user researchers, and finally that it is manageable for resource providers and administrators in the collaboration. In this paper, we present a security model and implementation improving the overall usability and security of resources used in Grid-based e-Research collaborations through exploitation of the Internet2 Shibboleth technology. This is explored in the context of a major new security focused project at the National e-Science Centre (NeSC) at the University of Glasgow in the nanoCMOS electronics domain

    Integrating security solutions to support nanoCMOS electronics research

    Get PDF
    The UK Engineering and Physical Sciences Research Council (EPSRC) funded Meeting the Design Challenges of nanoCMOS Electronics (nanoCMOS) is developing a research infrastructure for collaborative electronics research across multiple institutions in the UK with especially strong industrial and commercial involvement. Unlike other domains, the electronics industry is driven by the necessity of protecting the intellectual property of the data, designs and software associated with next generation electronics devices and therefore requires fine-grained security. Similarly, the project also demands seamless access to large scale high performance compute resources for atomic scale device simulations and the capability to manage the hundreds of thousands of files and the metadata associated with these simulations. Within this context, the project has explored a wide range of authentication and authorization infrastructures facilitating compute resource access and providing fine-grained security over numerous distributed file stores and files. We conclude that no single security solution meets the needs of the project. This paper describes the experiences of applying X.509-based certificates and public key infrastructures, VOMS, PERMIS, Kerberos and the Internet2 Shibboleth technologies for nanoCMOS security. We outline how we are integrating these solutions to provide a complete end-end security framework meeting the demands of the nanoCMOS electronics domain

    Self-Protecting Documents for Cloud Storage Security

    Get PDF
    International audienceInformation security is currently one of the most important issues in information systems. This concerns the confidentiality of information but also its integrity and availability. The problem becomes even more difficult when several companies are working together on a project and that the various documents "go out of" their respective information systems. We propose an architecture in which the documents themselves ensure their security and thus can be exchanged over uncontrolled resources such as cloud storage or even USB flash drives. For this we encapsulate within the document itself some security components (e.g. access control, usage control) to achieve an autonomic document architecture for Enterprise DRM (E-DRM). Using such self-protecting documents, a company can ensure security and privacy for its documents when outsourcing storage services (e.g. cloud)

    Digital piracy : theory

    Get PDF
    This article reviews recent theoretical contributions on digital piracy. It starts by elaborating on the reasons for intellectual property protection, by reporting a few facts about copyright protection, and by examining reasons to become a digital pirate. Next, it provides an exploration of the consequences of digital piracy, using a base model and several extensions (with consumer sampling, network effects, and indirect appropriation). A closer look at market-structure implications of end-user piracy is then taken. After a brief review of commercial piracy, additional legal and private responses to end-user piracy are considered. Finally, a quick look at emerging new business models is taken.information good, piracy, copyright, IP protection, internet, peer-to-peer, software, music
    corecore