217 research outputs found

    Flow logic for language-based safety and security

    Get PDF

    Biometric Standards Survey

    Get PDF
    This document presents a quick survey on the most important standards regarding biometric technologies, concentrating mainly in those concerning the smartcard environment

    Web Spoofing Revisited: SSL and Beyond

    Get PDF
    Can users believe what their browsers tell them? Even sophisticated Web users decide whether or not to trust a server based on browser cues such as location bar information, SSL icons, SSL warnings, certificate information, and response time. In their seminal work on Web spoofing, Felten et al showed how, in 1996, a malicious server could forge some of these cues. However, this work used genuine SSL sessions, and Web technology has evolved much since 1996. The Web has since become the pre-eminent medium for electronic service delivery to remote users, and the security of many commerce, government, and academic network applications critically rests on the assumption that users can authenticate the servers with which they interact. This situation raises the question: is the browser-user communication model today secure enough to warrant this assumption? In this paper, we answer this question by systematically showing how a malicious server can forge every one of the above cues. Our work extends the prior results by examining contemporary browsers, and by forging all of the SSL information a client sees, including the very existence of an SSL session (thus providing a cautionary tale about the security of one of the most common applications of PKI). We have made these techniques available for public demonstration, because anything less than working code would not convincingly answer the question. We also discuss implications and potential countermeasures, both short-term and long-term

    Greenpass Client Tools for Delegated Authorization in Wireless Networks

    Get PDF
    Dartmouth\u27s Greenpass project seeks to provide strong access control to a wireless network while simultaneously providing flexible guest access; to do so, it augments the Wi-Fi Alliance\u27s existing WPA standard, which offers sufficiently strong user authentication and access control, with authorization based on SPKI certificates. SPKI allows certain local users to delegate network access to guests by issuing certificates that state, in essence, he should get access because I said it\u27s okay. The Greenpass RADIUS server described in Kim\u27s thesis [55] performs an authorization check based on such statements so that guests can obtain network access without requiring a busy network administrator to set up new accounts in a centralized database. To our knowledge, Greenpass is the first working delegation-based solution to Wi-Fi access control. My thesis describes the Greenpass client tools, which allow a guest to introduce himself to a delegator and allow the delegator to issue a new SPKI certificate to the guest. The guest does not need custom client software to introduce himself or to connect to the Wi-Fi network. The guest and delegator communicate using a set of Web applications. The guest obtains a temporary key pair and X.509 certificate if needed, then sends his public key value to a Web server we provide. The delegator looks up her guest\u27s public key and runs a Java applet that lets her verify her guests\u27 identity using visual hashing and issue a new SPKI certificate to him. The guest\u27s new certificate chain is stored as an HTTP cookie to enable him to push it to an authorization server at a later time. I also describe how Greenpass can be extended to control access to a virtual private network (VPN) and suggest several interesting future research and development directions that could build on this work.My thesis describes the Greenpass client tools, which allow a guest to introduce himself to a delegator and allow the delegator to issue a new SPKI certificate to the guest. The guest does not need custom client software to introduce himself or to connect to the Wi-Fi network. The guest and delegator communicate using a set of Web applications. The guest obtains a temporary key pair and X.509 certificate if needed, then sends his public key value to a Web server we provide. The delegator looks up her guest\u27s public key and runs a Java applet that lets her verify her guests\u27 identity using visual hashing and issue a new SPKI certificate to him. The guest\u27s new certificate chain is stored as an HTTP cookie to enable him to push it to an authorization server at a later time. I also describe how Greenpass can be extended to control access to a virtual private network (VPN) and suggest several interesting future research and development directions that could build on this work

    Platform Embedded Security Technology Revealed

    Get PDF
    Computer scienc

    Principled Flow Tracking in IoT and Low-Level Applications

    Get PDF
    Significant fractions of our lives are spent digitally, connected to and dependent on Internet-based applications, be it through the Web, mobile, or IoT. All such applications have access to and are entrusted with private user data, such as location, photos, browsing habits, private feed from social networks, or bank details.In this thesis, we focus on IoT and Web(Assembly) apps. We demonstrate IoT apps to be vulnerable to attacks by malicious app makers who are able to bypass the sandboxing mechanisms enforced by the platform to stealthy exfiltrate user data. We further give examples of carefully crafted WebAssembly code abusing the semantics to leak user data.We are interested in applying language-based technologies to ensure application security due to the formal guarantees they provide. Such technologies analyze the underlying program and track how the information flows in an application, with the goal of either statically proving its security, or preventing insecurities from happening at runtime. As such, for protecting against the attacks on IoT apps, we develop both static and dynamic methods, while for securing WebAssembly apps we describe a hybrid approach, combining both.While language-based technologies provide strong security guarantees, they are still to see a widespread adoption outside the academic community where they emerged.In this direction, we outline six design principles to assist the developer in choosing the right security characterization and enforcement mechanism for their system.We further investigate the relative expressiveness of two static enforcement mechanisms which pursue fine- and coarse-grained approaches for tracking the flow of sensitive information in a system.\ua0Finally, we provide the developer with an automatic method for reducing the manual burden associated with some of the language-based enforcements

    The Value of User-Visible Internet Cryptography

    Full text link
    Cryptographic mechanisms are used in a wide range of applications, including email clients, web browsers, document and asset management systems, where typical users are not cryptography experts. A number of empirical studies have demonstrated that explicit, user-visible cryptographic mechanisms are not widely used by non-expert users, and as a result arguments have been made that cryptographic mechanisms need to be better hidden or embedded in end-user processes and tools. Other mechanisms, such as HTTPS, have cryptography built-in and only become visible to the user when a dialogue appears due to a (potential) problem. This paper surveys deployed and potential technologies in use, examines the social and legal context of broad classes of users, and from there, assesses the value and issues for those users

    A study of the security implications involved with the use of executable World Wide Web content

    Get PDF
    Malicious executable code is nothing new. While many consider that the concept of malicious code began in the 1980s when the first PC viruses began to emerge, the concept does in fact date back even earlier. Throughout the history of malicious code, methods of hostile code delivery have mirrored prevailing patterns of code distribution. In the 1980s, file infecting and boot sector viruses were common, mirroring the fact that during this time, executable code was commonly transferred via floppy disks. Since the 1990s email has been a major vector for malicious code attacks. Again, this mirrors the fact that during this period of time email has been a common means of sharing code and documents. This thesis examines another model of executable code distribution. It considers the security risks involved with the use of executable code embedded or attached to World Wide Web pages. In particular, two technologies are examined. Sun Microsystems\u27 Java Programming Language and Microsoft\u27s ActiveX Control Architecture are both technologies that can be used to connect executable program code to World Wide Web pages. This thesis examines the architectures on which these technologies are based, as well as the security and trust models that they implement. In doing so, this thesis aims to assess the level of risk posed by such technologies and to highlight similar risks that might occur with similar future technologies. ()

    The Continuum Architecture: Towards Enabling Chaotic Ubiquitous Computing

    Get PDF
    Interactions in the style of the ubiquitous computing paradigm are possible today, but only in handcrafted environments within one administrative and technological realm. This thesis describes an architecture (called Continuum), a design that realises the architecture, and a proof-of-concept implementation that brings ubiquitous computing to chaotic environments. Essentially, Continuum enables an ecology at the edge of the network, between users, competing service providers from overlapping administrative domains, competing internet service providers, content providers, and software developers that want to add value to the user experience. Continuum makes the ubiquitous computing functionality orthogonal to other application logic. Existing web applications are augmented for ubiquitous computing with functionality that is dynamically compiled and injected by a middleware proxy into the web pages requested by a web browser at the user?s mobile device. This enables adaptability to environment variability, manageability without user involvement, and expansibility without changes to the mobile. The middleware manipulates self-contained software units with precise functionality (called frames), which help the user interact with contextual services in conjunction with the data to which they are attached. The middleware and frame design explicitly incorporates the possibility of discrepancies between the assumptions of ubiquitous-computing software developers and field realities: multiple administrative domains, unavailable service, unavailable software, and missing contextual information. A framework for discovery and authorisation addresses the chaos inherent to the paradigm through the notion of role assertions acquired dynamically by the user. Each assertion represents service access credentials and contains bootstrapping points for service discovery on behalf of the holding user. A proof-of-concept prototype validates the design, and implements several frames that demonstrate general functionality, including driving discovery queries over multiple service discovery protocols and making equivalences between service types, across discovery protocols
    • …
    corecore