65 research outputs found

    Virtual reality retooling humanities courses: Finance and marketing experience at a Czech university

    Get PDF
    Virtual reality environments (VRE) allow users to visualize both real-life and imaginary activities. For this reason, they make appropriate training fields at universities, too. However, the positive or negative effects of VRE are still a subject of research. There is a need to verify methods of their deployment, student responses and the impact of VRE implementation. Science and medicine courses are frequently exploiting VRE, while their exploitation in humanities is much less frequent. In our paper, we describe and evaluate their application in finance and marketing courses. Both courses were designed and developed as part of a larger, potentially university-wide project. The courses were enriched by mazes including 3-D rooms with course content elements. Students could explore them and communicate with their lecturers and classmates. To allow anytime/anywhere access, the VRE does not require using any special interface. The finance course was organized as a pedagogical experiment with test and control groups. Due to organizational and scheduling reasons, the VRE in marketing served just as enrichment. At the end of the term, all students using VRE were given a questionnaire assessing their satisfaction. The majority expressed satisfaction. In the finance course, positive opinion was also supported by students' improved grades. In total, 87.5% of students agreed that the application of VRE contributed to gaining knowledge. Based on the positive experience and outcomes, the university plans to expand and to intensify its VRE-supported education.Web of Science1219art. no. 1017

    没入型テレプレゼンス環境における身体のマッピングと拡張に関する研究

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 暦本 純一, 東京大学教授 坂村 健, 東京大学教授 越塚 登, 東京大学教授 中尾 彰宏, 東京大学教授 佐藤 洋一University of Tokyo(東京大学

    Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines

    Get PDF
    Virtual manufacturing systems can provide useful means for products to be manufactured without the need of physical testing on the shop floor. As a result, the time and cost of part production can be decreased. There are different error sources in machine tools such as tool deflection, geometrical deviations of moving axis and thermal distortions of machine tool structures. Some of these errors can be decreased by controlling the machining process and environmental parameters. However other errors like tool deflection and geometrical errors which have a big portion of the total error, need more attention. This paper presents a virtual machining system in order to enforce dimensional, geometrical and tool deflection errors in three-axis milling operations. The system receives 21 dimensional and geometrical errors of a machine tool and machining codes of a specific part as input. The output of the system is the modified codes which will produce actual machined part in the virtual environment

    Whole-Body Dynamic Telelocomotion: A Step-to-Step Dynamics Approach to Human Walking Reference Generation

    Full text link
    Teleoperated humanoid robots hold significant potential as physical avatars for humans in hazardous and inaccessible environments, with the goal of channeling human intelligence and sensorimotor skills through these robotic counterparts. Precise coordination between humans and robots is crucial for accomplishing whole-body behaviors involving locomotion and manipulation. To progress successfully, dynamic synchronization between humans and humanoid robots must be achieved. This work enhances advancements in whole-body dynamic telelocomotion, addressing challenges in robustness. By embedding the hybrid and underactuated nature of bipedal walking into a virtual human walking interface, we achieve dynamically consistent walking gait generation. Additionally, we integrate a reactive robot controller into a whole-body dynamic telelocomotion framework. Thus, allowing the realization of telelocomotion behaviors on the full-body dynamics of a bipedal robot. Real-time telelocomotion simulation experiments validate the effectiveness of our methods, demonstrating that a trained human pilot can dynamically synchronize with a simulated bipedal robot, achieving sustained locomotion, controlling walking speeds within the range of 0.0 m/s to 0.3 m/s, and enabling backward walking for distances of up to 2.0 m. This research contributes to advancing teleoperated humanoid robots and paves the way for future developments in synchronized locomotion between humans and bipedal robots.Comment: 8 pages, 8 figure

    Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines

    Get PDF
    Virtual manufacturing systems can provide useful means for products to be manufactured without the need of physical testing on the shop floor. As a result, the time and cost of part production can be decreased. There are different error sources in machine tools such as tool deflection, geometrical deviations of moving axis and thermal distortions of machine tool structures. Some of these errors can be decreased by controlling the machining process and environmental parameters. However other errors like tool deflection and geometrical errors which have a big portion of the total error, need more attention. This paper presents a virtual machining system in order to enforce dimensional, geometrical and tool deflection errors in three-axis milling operations. The system receives 21 dimensional and geometrical errors of a machine tool and machining codes of a specific part as input. The output of the system is the modified codes which will produce actual machined part in the virtual environment

    The magic lens box: simplifying the development of mixed reality games

    Get PDF
    Mixed Reality games are becoming more and more popular these days and offer unique experiences to the players. However, development of such games typically still requires expert knowledge and access to Mixed Reality toolkits or frameworks. In this paper, we present the so-called Magic Lens Box that follows a different approach. Based on standard hardware The Magic Lens Box enables game designers with little technological background to create their own Mixed Reality games in a simple yet powerful fashion. We further outline the development process of the magic Lens Box, describe the conceptual model behind it and discuss three games that have been developed with our system. Evaluation of these games shows the viability of our approach, enabling the creation of a variety of rather different Mixed reality games while keeping the development process simple

    Parallel Graph Grammars with Instantiation Rules Allow Efficient Structural Factorization of Virtual Vegetation

    Get PDF
    Parallel rewriting of typed attributed graphs, based on the single-pushout approach extended by connection transformations, serves as the backbone of the multi-paradigm language XL, which is widely used in functional-structural plant modelling. XL allows to define instantiation rules, which enable an instancing of graphs at runtime for frequently occurring substructures, e.g., in 3-d models of botanical trees. This helps to save computer memory during complex simulations of vegetation structure. Instantiation rules can be called recursively and with references to graph nodes, thus providing a unifying formal framework for various concepts from the literature: object instancing, structural factorization, Xfrog multiplier nodes, L-systems with interpretation. We give simple examples and measure the computation time for an idealized growing virtual plant, taken from the GreenLab model, in its implementation with instantiation rules in XL, compared to a version without instantiation rules

    VRtualize in Simulation and Training

    Get PDF
    Road safety education is considered one of the most important basic skills that need to be taught on children with the correct best practical way since they are small. However, many programs, do not consider the practical skills of the road-crossing task, the functional and behavioral factors that may put some children at increased risk, and the most beneficial methods to transfer knowledge to improved behavior in modern, real-world environments. Therefore, to address this issue, VRtualize, a Virtual Reality in Simulation and Training will be programmed. VRtualize will train children on how to cross the road using the correct method and will create awareness on the importance of road safety. This program is giving the real experience to cross the road while the children do not expose to the road danger. It will use the Unity as the platform to create the program using C# language. The program will be using 3D effect using the Google Oculus to give the real experience being on real road. Children need to undergo three levels which are first the road with car passing, second road, practice to cross using zebra cross and last cross practice is using pedestrian bridge. The Rapid Application Development (RAD) methodology is used for this project. Surveys and interviews are the sources to collect data about this project

    Génération automatique de résumés par analyse sélective

    Full text link
    Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal
    corecore