23 research outputs found

    Model based fault detection for two-dimensional systems

    Get PDF
    Fault detection and isolation (FDI) are essential in ensuring safe and reliable operations in industrial systems. Extensive research has been carried out on FDI for one dimensional (1-D) systems, where variables vary only with time. The existing FDI strategies are mainly focussed on 1-D systems and can generally be classified as model based and process history data based methods. In many industrial systems, the state variables change with space and time (e.g., sheet forming, fixed bed reactors, and furnaces). These systems are termed as distributed parameter systems (DPS) or two dimensional (2-D) systems. 2-D systems have been commonly represented by the Roesser Model and the F-M model. Fault detection and isolation for 2-D systems represent a great challenge in both theoretical development and applications and only limited research results are available. In this thesis, model based fault detection strategies for 2-D systems have been investigated based on the F-M and the Roesser models. A dead-beat observer based fault detection has been available for the F-M model. In this work, an observer based fault detection strategy is investigated for systems modelled by the Roesser model. Using the 2-D polynomial matrix technique, a dead-beat observer is developed and the state estimate from the observer is then input to a residual generator to monitor occurrence of faults. An enhanced realization technique is combined to achieve efficient fault detection with reduced computations. Simulation results indicate that the proposed method is effective in detecting faults for systems without disturbances as well as those affected by unknown disturbances.The dead-beat observer based fault detection has been shown to be effective for 2-D systems but strict conditions are required in order for an observer and a residual generator to exist. These strict conditions may not be satisfied for some systems. The effect of process noises are also not considered in the observer based fault detection approaches for 2-D systems. To overcome the disadvantages, 2-D Kalman filter based fault detection algorithms are proposed in the thesis. A recursive 2-D Kalman filter is applied to obtain state estimate minimizing the estimation error variances. Based on the state estimate from the Kalman filter, a residual is generated reflecting fault information. A model is formulated for the relation of the residual with faults over a moving evaluation window. Simulations are performed on two F-M models and results indicate that faults can be detected effectively and efficiently using the Kalman filter based fault detection. In the observer based and Kalman filter based fault detection approaches, the residual signals are used to determine whether a fault occurs. For systems with complicated fault information and/or noises, it is necessary to evaluate the residual signals using statistical techniques. Fault detection of 2-D systems is proposed with the residuals evaluated using dynamic principal component analysis (DPCA). Based on historical data, the reference residuals are first generated using either the observer or the Kalman filter based approach. Based on the residual time-lagged data matrices for the reference data, the principal components are calculated and the threshold value obtained. In online applications, the T2 value of the residual signals are compared with the threshold value to determine fault occurrence. Simulation results show that applying DPCA to evaluation of 2-D residuals is effective.Doctoral These

    H∞ and L2–L∞ filtering for two-dimensional linear parameter-varying systems

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Wiley-BlackwellIn this paper, the H∞ and l2–l∞ filtering problem is investigated for two-dimensional (2-D) discrete-time linear parameter-varying (LPV) systems. Based on the well-known Fornasini–Marchesini local state-space (FMLSS) model, the mathematical model of 2-D systems under consideration is established by incorporating the parameter-varying phenomenon. The purpose of the problem addressed is to design full-order H∞ and l2–l∞ filters such that the filtering error dynamics is asymptotic stable and the prescribed noise attenuation levels in H∞ and l2–l∞ senses can be achieved, respectively. Sufficient conditions are derived for existence of such filters in terms of parameterized linear matrix inequalities (PLMIs), and the corresponding filter synthesis problem is then transformed into a convex optimization problem that can be efficiently solved by using standard software packages. A simulation example is exploited to demonstrate the usefulness and effectiveness of the proposed design method

    Control and Filtering for Discrete Linear Repetitive Processes with H infty and ell 2--ell infty Performance

    No full text
    Repetitive processes are characterized by a series of sweeps, termed passes, through a set of dynamics defined over a finite duration known as the pass length. On each pass an output, termed the pass profile, is produced which acts as a forcing function on, and hence contributes to, the dynamics of the next pass profile. This can lead to oscillations which increase in amplitude in the pass to pass direction and cannot be controlled by standard control laws. Here we give new results on the design of physically based control laws for the sub-class of so-called discrete linear repetitive processes which arise in applications areas such as iterative learning control. The main contribution is to show how control law design can be undertaken within the framework of a general robust filtering problem with guaranteed levels of performance. In particular, we develop algorithms for the design of an H? and 2\ell_{2}–\ell_{\infty} dynamic output feedback controller and filter which guarantees that the resulting controlled (filtering error) process, respectively, is stable along the pass and has prescribed disturbance attenuation performance as measured by HH_{\infty} and 2\ell_{2}\ell_{\infty} norms

    Stability-preserving model order reduction for nonlinear time delay systems

    Get PDF
    Delay elements are needed to model physical, industrial and engineering systems as action and reaction always come with latency. In this paper, we present an algorithm to obtain the reduced-order models (ROMs) while preserving the stability of nonlinear time delay systems (TDSs), which are approximated first by the piecewise-linear TDSs. One contribution is the derivation of the input-output stability of piecewise-linear TDSs, for the first time. The other is the preservation of the input-output stability of the ROMs. The system matrices are obtained by the left projection matrix from the solution of linear matrix inequalities (LMIs) for the input-output stability test of the original piecewise-linear TDSs and the right projection matrix from matching the estimated moments. An application example then verifies the effectiveness of the proposed method.published_or_final_versio

    Structure-Preserving Model Reduction of Physical Network Systems

    Get PDF
    This paper considers physical network systems where the energy storage is naturally associated to the nodes of the graph, while the edges of the graph correspond to static couplings. The first sections deal with the linear case, covering examples such as mass-damper and hydraulic systems, which have a structure that is similar to symmetric consensus dynamics. The last section is concerned with a specific class of nonlinear physical network systems; namely detailed-balanced chemical reaction networks governed by mass action kinetics. In both cases, linear and nonlinear, the structure of the dynamics is similar, and is based on a weighted Laplacian matrix, together with an energy function capturing the energy storage at the nodes. We discuss two methods for structure-preserving model reduction. The first one is clustering; aggregating the nodes of the underlying graph to obtain a reduced graph. The second approach is based on neglecting the energy storage at some of the nodes, and subsequently eliminating those nodes (called Kron reduction).</p
    corecore