1,479 research outputs found

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided

    Scalable base station switching framework for green cellular networks

    Get PDF
    With the recent unprecedented growth in the wireless market, network operators are obliged not only to find new techniques including dense deployment of base stations (BSs) in order to support high data rate services and high user density, but also to reduce the operating costs and energy consumption of various network elements. To solve these challenges, powering down certain BSs during low-traffic periods, so-called BS sleeping, has emerged as an effective green communications paradigm. While BS sleeping offers the potential to significantly lower energy consumption, it also raises many challenges, since when a BS is switched off, this can lead to, for example, coverage holes, sudden degradation in quality of service (QoS), higher transmit power dissipation in off-cell mobile stations (MSs), an inability to rapidly power up/down equipment and finally, a failure to uphold regulatory requirements. In order to realise greener network designs which both maximise energy savings whilst guaranteeing QoS, innovative BS switching mechanisms need to be developed. This thesis presents a novel BS switching framework which improves energy efficiency (EE) in comparison with existing approaches, while guaranteeing the minimum QoS and seamless services. The major technical contributions in this framework are: i) a new BS to relay station (RS) switching model where certain BSs are switched to RS mode rather than being turned off, firstly using a fixed threshold based switching algorithm utilizing temporal traffic diversity, and ii) then subsequently by means of an adaptive threshold by exploiting the inherently asymmetric traffic profile between cells, i.e., by exploiting both the temporal and spatial traffic diversity; iii) a traffic-and-interference-aware BS switching strategy that considers the impact of inter-cell interference in the decision making process to dynamically determine the best BS set to be kept active for improved EE; and finally iv) a novel scalable multimode BS switching model which enables each BS to operate in different power modes i.e., macro/micro/sleep to explore energy savings potential even at higher traffic conditions. The thesis findings conclusively confirm this new BS switching framework provides significant EE improvements from both BS and MS perspectives, under diverse network conditions and represents a notable step towards greener communications
    corecore