18,544 research outputs found

    Fast design space exploration of vibration-based energy harvesting wireless sensors

    No full text
    An energy-harvester-powered wireless sensor node is a complicated system with many design parameters. To investigate the various trade-offs among these parameters, it is desirable to explore the multi-dimensional design space quickly. However, due to the large number of parameters and costly simulation CPU times, it is often difficult or even impossible to explore the design space via simulation. This paper presents a response surface model (RSM) based technique for fast design space exploration of a complete wireless sensor node powered by a tunable energy harvester. As a proof of concept, a software toolkit has been developed which implements the proposed design flow and incorporates either real data or parametrized models of the vibration source, the energy harvester, tuning controller and wireless sensor node. Several test scenarios are considered, which illustrate how the proposed approach permits the designer to adjust a wide range of system parameters and evaluate the effect almost instantly but still with high accuracy. In the developed toolkit, the estimated CPU time of one RSM estimation is 25s and the average RSM estimation error is less than 16.5

    Transfer Learning for Improving Model Predictions in Highly Configurable Software

    Full text link
    Modern software systems are built to be used in dynamic environments using configuration capabilities to adapt to changes and external uncertainties. In a self-adaptation context, we are often interested in reasoning about the performance of the systems under different configurations. Usually, we learn a black-box model based on real measurements to predict the performance of the system given a specific configuration. However, as modern systems become more complex, there are many configuration parameters that may interact and we end up learning an exponentially large configuration space. Naturally, this does not scale when relying on real measurements in the actual changing environment. We propose a different solution: Instead of taking the measurements from the real system, we learn the model using samples from other sources, such as simulators that approximate performance of the real system at low cost. We define a cost model that transform the traditional view of model learning into a multi-objective problem that not only takes into account model accuracy but also measurements effort as well. We evaluate our cost-aware transfer learning solution using real-world configurable software including (i) a robotic system, (ii) 3 different stream processing applications, and (iii) a NoSQL database system. The experimental results demonstrate that our approach can achieve (a) a high prediction accuracy, as well as (b) a high model reliability.Comment: To be published in the proceedings of the 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS'17

    Automated Circuit Approximation Method Driven by Data Distribution

    Full text link
    We propose an application-tailored data-driven fully automated method for functional approximation of combinational circuits. We demonstrate how an application-level error metric such as the classification accuracy can be translated to a component-level error metric needed for an efficient and fast search in the space of approximate low-level components that are used in the application. This is possible by employing a weighted mean error distance (WMED) metric for steering the circuit approximation process which is conducted by means of genetic programming. WMED introduces a set of weights (calculated from the data distribution measured on a selected signal in a given application) determining the importance of each input vector for the approximation process. The method is evaluated using synthetic benchmarks and application-specific approximate MAC (multiply-and-accumulate) units that are designed to provide the best trade-offs between the classification accuracy and power consumption of two image classifiers based on neural networks.Comment: Accepted for publication at Design, Automation and Test in Europe (DATE 2019). Florence, Ital

    Federated Neural Architecture Search

    Full text link
    To preserve user privacy while enabling mobile intelligence, techniques have been proposed to train deep neural networks on decentralized data. However, training over decentralized data makes the design of neural architecture quite difficult as it already was. Such difficulty is further amplified when designing and deploying different neural architectures for heterogeneous mobile platforms. In this work, we propose an automatic neural architecture search into the decentralized training, as a new DNN training paradigm called Federated Neural Architecture Search, namely federated NAS. To deal with the primary challenge of limited on-client computational and communication resources, we present FedNAS, a highly optimized framework for efficient federated NAS. FedNAS fully exploits the key opportunity of insufficient model candidate re-training during the architecture search process, and incorporates three key optimizations: parallel candidates training on partial clients, early dropping candidates with inferior performance, and dynamic round numbers. Tested on large-scale datasets and typical CNN architectures, FedNAS achieves comparable model accuracy as state-of-the-art NAS algorithm that trains models with centralized data, and also reduces the client cost by up to two orders of magnitude compared to a straightforward design of federated NAS

    Predicting Intermediate Storage Performance for Workflow Applications

    Full text link
    Configuring a storage system to better serve an application is a challenging task complicated by a multidimensional, discrete configuration space and the high cost of space exploration (e.g., by running the application with different storage configurations). To enable selecting the best configuration in a reasonable time, we design an end-to-end performance prediction mechanism that estimates the turn-around time of an application using storage system under a given configuration. This approach focuses on a generic object-based storage system design, supports exploring the impact of optimizations targeting workflow applications (e.g., various data placement schemes) in addition to other, more traditional, configuration knobs (e.g., stripe size or replication level), and models the system operation at data-chunk and control message level. This paper presents our experience to date with designing and using this prediction mechanism. We evaluate this mechanism using micro- as well as synthetic benchmarks mimicking real workflow applications, and a real application.. A preliminary evaluation shows that we are on a good track to meet our objectives: it can scale to model a workflow application run on an entire cluster while offering an over 200x speedup factor (normalized by resource) compared to running the actual application, and can achieve, in the limited number of scenarios we study, a prediction accuracy that enables identifying the best storage system configuration
    corecore