35 research outputs found

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code

    Algorithm-Architecture Co-Design for Digital Front-Ends in Mobile Receivers

    Get PDF
    The methodology behind this work has been to use the concept of algorithm-hardware co-design to achieve efficient solutions related to the digital front-end in mobile receivers. It has been shown that, by looking at algorithms and hardware architectures together, more efficient solutions can be found; i.e., efficient with respect to some design measure. In this thesis the main focus have been placed on two such parameters; first reduced complexity algorithms to lower energy consumptions at limited performance degradation, secondly to handle the increasing number of wireless standards that preferably should run on the same hardware platform. To be able to perform this task it is crucial to understand both sides of the table, i.e., both algorithms and concepts for wireless communication as well as the implications arising on the hardware architecture. It is easier to handle the high complexity by separating those disciplines in a way of layered abstraction. However, this representation is imperfect, since many interconnected "details" belonging to different layers are lost in the attempt of handling the complexity. This results in poor implementations and the design of mobile terminals is no exception. Wireless communication standards are often designed based on mathematical algorithms with theoretical boundaries, with few considerations to actual implementation constraints such as, energy consumption, silicon area, etc. This thesis does not try to remove the layer abstraction model, given its undeniable advantages, but rather uses those cross-layer "details" that went missing during the abstraction. This is done in three manners: In the first part, the cross-layer optimization is carried out from the algorithm perspective. Important circuit design parameters, such as quantization are taken into consideration when designing the algorithm for OFDM symbol timing, CFO, and SNR estimation with a single bit, namely, the Sign-Bit. Proof-of-concept circuits were fabricated and showed high potential for low-end receivers. In the second part, the cross-layer optimization is accomplished from the opposite side, i.e., the hardware-architectural side. A SDR architecture is known for its flexibility and scalability over many applications. In this work a filtering application is mapped into software instructions in the SDR architecture in order to make filtering-specific modules redundant, and thus, save silicon area. In the third and last part, the optimization is done from an intermediate point within the algorithm-architecture spectrum. Here, a heterogeneous architecture with a combination of highly efficient and highly flexible modules is used to accomplish initial synchronization in at least two concurrent OFDM standards. A demonstrator was build capable of performing synchronization in any two standards, including LTE, WiFi, and DVB-H

    FracBot: Design of wireless underground sensor networks for mapping hydraulic fractures and determining reservoir parameters in unconventional systems

    Get PDF
    Wireless underground sensor networks (WUSNs) enable a wide variety of emerging applications that are not possible with current underground monitoring techniques, which require miniaturized wireless sensor systems for mapping hydraulic fractures, monitoring unconventional reservoirs and measuring other wellbore parameters. We call these devices FracBots (Fracture Robots), an extension of RFID (Radio Frequency IDentifcation) tags that realize WUSNs for mapping and characterization of hydraulic fractures in unconventional reservoirs. The objective of this thesis is to design fully integrated magnetic induction (MI)-based FracBots (WUSNs) that enable reliable and e fficient wireless communications in underground oil reservoirs for performing the in-situ monitoring of oil reservoirs. This is very crucial for determining the sweet spot of oil and natural gas reserves. To this end, we have contributed in four areas as follows: fi rst, we develop a novel cross-layer communication framework for MI-based FracBot networks in dynamically changing underground environments. The framework combines a joint selection of modulation, channel coding, power control and a geographic forwarding paradigm. Second, we develop a novel MI-based localization framework that exploits the unique properties of MI- eld to determine the locations of the randomly deployed FracBot nodes in oil reservoirs. Third, we develop an accurate energy framework of a linear FracBot network topology that generates feasible nodes' transmission rates and network topology while always guaranteeing su fficient energy. Then, we design, develop, and fabricate MI-based FracBot nodes. Finally, to validate the performance of our solutions in our produced prototype of FracBot nodes, we develop a physical MI-based WUSN testbed.Ph.D

    A cooperative navigation system with distributed architecture for multiple unmanned aerial vehicles

    Get PDF
    Unmanned aerial vehicles (UAVs) have been widely used in many applications due to, among other features, their versatility, reduced operating cost, and small size. These applications increasingly demand that features related to autonomous navigation be employed, such as mapping. However, the reduced capacity of resources such as, for example, battery and hardware (memory and processing units) can hinder the development of these applications in UAVs. Thus, the collaborative use of multiple UAVs for mapping can be used as an alternative to solve this problem, with a cooperative navigation system. This system requires that individual local maps be transmitted and merged into a global map in a distributed manner. In this scenario, there are two main problems to be addressed: the transmission of maps among the UAVs and the merging of the local maps in each UAV. In this context, this work describes the design, development, and evaluation of a cooperative navigation system with distributed architecture to be used by multiple UAVs. This system uses proposed structures to store the 3D occupancy grid maps. Furthermore, maps are compressed and transmitted between UAVs using algorithms specially proposed for these purposes. Then the local 3D maps are merged in each UAV. In this map merging system, maps are processed before and merged in pairs using suitable algorithms to make them compatible with the 3D occupancy grid map data. In addition, keypoints orientation properties are obtained from potential field gradients. Some proposed filters are used to improve the parameters of the transformations among maps. To validate the proposed solution, simulations were performed in six different environments, outdoors and indoors, and with different layout characteristics. The obtained results demonstrate the effectiveness of thesystemin the construction, sharing, and merging of maps. Still, from the obtained results, the extreme complexity of map merging systems is highlighted.Os veículos aéreos não tripulados (VANTs) têm sidoamplamenteutilizados em muitas aplicações devido, entre outrosrecursos,à sua versatilidade, custo de operação e tamanho reduzidos. Essas aplicações exigem cadavez mais que recursos relacionados à navegaçãoautônoma sejam empregados,como o mapeamento. No entanto, acapacidade reduzida de recursos como, por exemplo, bateria e hardware (memória e capacidade de processamento) podem atrapalhar o desenvolvimento dessas aplicações em VANTs.Assim, o uso colaborativo de múltiplosVANTs para mapeamento pode ser utilizado como uma alternativa para resolvereste problema, criando um sistema de navegaçãocooperativo. Estesistema requer que mapas locais individuais sejam transmitidos efundidos em um mapa global de forma distribuída.Nesse cenário, há doisproblemas principais aserem abordados:a transmissão dosmapas entre os VANTs e afusão dos mapas locais em cada VANT. Nestecontexto, estatese apresentao projeto, desenvolvimento e avaliaçãode um sistema de navegação cooperativo com arquitetura distribuída para ser utilizado pormúltiplos VANTs. Este sistemausa estruturas propostas para armazenaros mapasdegradedeocupação 3D. Além disso, os mapas são compactados e transmitidos entre os VANTs usando os algoritmos propostos. Em seguida, os mapas 3D locais são fundidos em cada VANT. Neste sistemade fusão de mapas, os mapas são processados antes e juntados em pares usando algunsalgoritmos adequados para torná-los compatíveiscom os dados dos mapas da grade de ocupação 3D. Além disso, as propriedadesde orientação dos pontoschave são obtidas a partir de gradientes de campos potenciais. Alguns filtros propostos são utilizadospara melhorar as indicações dos parâmetros dastransformações entre mapas. Paravalidar a aplicação proposta, foram realizadas simulações em seis ambientes distintos, externos e internos, e com características construtivas distintas. Os resultados apresentados demonstram a efetividade do sistema na construção, compartilhamento e fusão dos mapas. Ainda, a partir dos resultados obtidos, destaca-se a extrema complexidade dos sistemas de fusão de mapas

    SoCRocket - A flexible and extensible Virtual Platform for the development of robust Embedded Systems

    Get PDF
    Der Schwerpunkt dieser Arbeit liegt in der Erhöhung des Abstraktionsniveaus im Entwurfsprozess, speziell dem Entwurf von Systemen auf Basis von Virtuellen Plattformen (VPs), Transaction-Level-Modellierung (TLM) und SystemC. Es wird eine ganzheitliche Methode vorgestellt, mit der komplexe eingebettete Systeme effizient modelliert werden können. Ergebnis ist eine der RTL-Synthese nahezu gleichgestellte Genauigkeit bei wesentlich höherer Flexibilität und Simulationsgeschwindigkeit. Das SoCRocket-System orientiert sich dazu an existierenden Standards und stellt Methoden zu deren effizientem Einsatz zur Verbesserung von Simulationsgeschwindigkeit und Simulationsgenauigkeit vor. So wird unter anderem gezeigt, wie moderne Multi-Kanal-Protokolle mit Split-Transfers durch Ausgleich des Intertransaktions-Timings ohne die Einführung zusätzlicher Protokollphasen zeitlich genau modelliert werden können. Standardisierungslücken in den Bereichen Speichermodellierung und Systemkonfiguration werden durch standardoffene Lösungen geschlossen. Darüber hinaus wird neue Infrastruktur zur Modellierung von Signalkommunikation auf Transaktionsebene, der Verifikation von Komponenten und der Modellierung des Energieverbrauchs vorgestellt. Zur Demonstration wurden die Kernkomponenten einer im europäischen Raumfahrtsektor maßgeblichen Hardwarebibliothek modelliert. Alle Komponenten wurden zunächst in Unit-Tests verifiziert und anschließend in einem Systemprototypen integriert. Zur Verifikation der Funktion, sowie Bestimmung von Simulationsgeschwindigkeit und zeitlicher Genauigkeit, wurde dieser für unterschiedliche Abstraktionsstufen konfiguriert und mit einem in VHDL beschriebenen RISC-Referenzentwurf (LEON3MP) verglichen. Das System mit losem Timing (LT) und blockierender Kommunikation ist im Durchschnitt 561-mal schneller als die RTL-Referenz und weist eine durchschnittliche Timing-Abweichung von 7,04% auf. Das System mit näherungsweise akkuratem Timing (AT) und nicht-blockierender Kommunikation ist 335-mal schneller. Die durchschnittliche Timing-Abweichung beträgt hier nur noch 3,03%, was einer Standardabweichung von 0.033 und damit einer sehr hohen statistischen Sicherheit entspricht. Die verschiedenen Abstraktionsniveaus können zur Realisierung mehrstufiger Architekturexplorationen eingesetzt werden. Dies wird am Beispiel einer hyperspektralen Bildkompression verdeutlicht.The focus of this work is raising the abstraction level in the development process, especially for the design of systems based on Virtual Platforms (VPs), Transaction Level Modeling (TLM), and SystemC. A holistic method for efficient modeling of complex embedded systems is presented. Results are accuracies close to RTL synthesis but at much higher flexibility, and simulation performance. The SoCRocket system integrates existing standards and introduces new methods for improvement of simulation performance and accuracy. It is shown, amongst others, how modern multi-channel protocols with split transfers can be accurately modeled by compensating inter-transaction timing without introducing additional protocol phases. Standardization gaps in the area of memory modeling and system configuration are closed by standard-open solutions. Furthermore, new infrastructure for modeling signal communication on transaction level, verification of components, and estimating power consumption are presented. All components have been verified in unit tests and were subsequently integrated in a system prototype. For functional verification, as well as measurement of simulation performance and accuracy, the prototype was configured for different abstractions and compared to a VHDL-based RISC reference design (LEON3MP). The loosely-timed platform prototype with blocking communication (LT) is in average 561 times faster than the RTL reference and shows an average timing deviation of 7,04%. The approximately-timed system (AT) with non-blocking communication is 335 times faster. Here, the timing deviation is only 3,03 %, corresponding to a standard deviation of 0.033, proving a very high statistic certainty. The system’s various abstraction levels can be exploited by a multi-stage architecture exploration. This is demonstrated by the example of a hyperspectral image compression

    Accountants\u27 index. Thirty-second supplement, January-December 1983, volume 1: A-L

    Get PDF
    https://egrove.olemiss.edu/aicpa_accind/1041/thumbnail.jp

    The biomechanics of human locomotion

    Get PDF
    Includes bibliographical references. The thesis on CD-ROM includes Animate, GaitBib, GaitBook and GaitLab, four quick time movies which focus on the functional understanding of human gait. The CD-ROM is available at the Health Sciences Library

    Safety and Mission Assurance Acronyms, Abbreviations, and Definitions

    Get PDF
    This NASA Technical Handbook compiles into a single volume safety, reliability, maintainability, and quality assurance and risk management terms defined and used in NASA safety and mission assurance directives and standards. The purpose of this handbook is to support effective communication within NASA and with its contractors. The definitions in this handbook are updated when the definition of the acronym or term is updated in the originating document

    Accountants\u27 index. Twenty-eighth supplement, January-December 1979, volume 1: A-L

    Get PDF
    https://egrove.olemiss.edu/aicpa_accind/1033/thumbnail.jp
    corecore