154 research outputs found

    Understanding the agility of running birds: Sensorimotor and mechanical factors in avian bipedal locomotion

    Get PDF
    Birds are a diverse and agile lineage of vertebrates that all use bipedal locomotion for at least part of their life. Thus birds provide a valuable opportunity to investigate how biomechanics and sensorimotor control are integrated for agile bipedal locomotion. This review summarizes recent work using terrain perturbations to reveal neuromechanical control strategies used by ground birds to achieve robust, stable and agile running. Early experiments in running guinea fowl aimed to reveal the immediate intrinsic mechanical response to an unexpected drop ('pothole') in terrain. When navigating the pothole, guinea fowl experience large changes in leg posture in the perturbed step, which correlates strongly with leg loading and perturbation recovery. Analysis of simple theoretical models of running has further confirmed the crucial role of swing-leg trajectory control for regulating foot contact timing and leg loading in uneven terrain. Coupling between body and leg dynamics results in an inherent trade-off in swing leg retraction rate for fall avoidance versus injury avoidance. Fast leg retraction minimizes injury risk, but slow leg retraction minimizes fall risk. Subsequent experiments have investigated how birds optimize their control strategies depending on the type of perturbation (pothole, step, obstacle), visibility of terrain, and with ample practice negotiating terrain features. Birds use several control strategies consistently across terrain contexts: 1) independent control of leg angular cycling and leg length actuation, which facilitates dynamic stability through simple control mechanisms, 2) feedforward regulation of leg cycling rate, which tunes foot-contact timing to maintain consistent leg loading in uneven terrain (minimizing fall and injury risks), 3) load-dependent muscle actuation, which rapidly adjusts stance push-off and stabilizes body mechanical energy, and 4) multi-step recovery strategies that allow body dynamics to transiently vary while tightly regulating leg loading to minimize risks of fall and injury. In future work, it will be interesting to investigate the learning and adaptation processes that allow animals to adjust neuromechanical control mechanisms over short and long timescales

    The effect of swing leg retraction on biped walking stability is influenced by the walking speed and step-length

    Get PDF
    Swing Leg Retraction (SLR) is observed in human walking and running. Previous studies have concluded that SLR improves the stability and robustness of biped walking. But this conclusion was based on analysis of robot models that can only walk at a very small range of step-lengths and slow or fixed speeds. By contrast, humans can walk with a large range of speeds and step-lengths. Moreover, human walking patterns have a special feature that has not been considered in the previous studies on SLR effects: At a given walking speed, v, humans prefer a step-length, s, which satisfies the power law, s-v β . Therefore, previous studies on SLR can't tell us whether their conclusion will still hold in the full range of human walking patterns (i.e., various walking speeds and step-lengths). This is the question we want to answer in this paper. In this study, using a simple biped model, we studied how the SLR affects the walking stability in the full range of human walking speeds/step-lengths. Preliminary analysis of both models suggests the same conclusion: (1) SLR improves the stability more evidently in human-preferred walking patterns than in other walking patterns. (2) In walking patterns that are very unlike human-preferred ones, the SLR improves the stability very little, or even deteriorates it drastically. Therefore, the new finding of our study is that how the SLR affects the biped walking stability depends on the walking speed and step-length. SLR does not always improve the stability of biped walking

    Understanding and Improving Locomotion: The Simultaneous Optimization of Motion and Morphology in Legged Robots

    Full text link
    There exist many open design questions in the field of legged robotics. Should leg extension and retraction occur with a knee or a prismatic joint? Will adding a compliant ankle lead to improved energetics compared to a point foot? Should quadrupeds have a flexible or a rigid spine? Should elastic elements in the actuation be placed in parallel or in series with the motors? Though these questions may seem basic, they are fundamentally difficult to approach. A robot with either discrete choice will likely need very different components and use very different motion to perform at its best. To make a fair comparison between two design variations, roboticists need to ask, is the best version of a robot with a discrete morphological variation better than the best version of a robot with the other variation? In this dissertation, I propose to answer these type of questions using an optimization based approach. Using numerical algorithms, I let a computer determine the best possible motion and best set of parameters for each design variation in order to be able to compare the best instance of each variation against each other. I developed and implemented that methodology to explore three primary robotic design questions. In the first, I asked if parallel or series elastic actuation is the more energetically economical choice for a legged robot. Looking at a variety of force and energy based cost functions, I mapped the optimal motion cost landscape as a function of configurable parameters in the hoppers. In the best case, the series configuration was more economical for an energy based cost function, and the parallel configuration was better for a force based cost function. I then took this work a step further and included the configurable parameters directly within the optimization on a model with gear friction. I found, for the most realistic cost function, the electrical work, that series was the better choice when the majority of the transmission was handled by a low-friction rotary-to-linear transmission. In the second design question, I extended this analysis to a two-dimensional monoped moving at a forward velocity with either parallel or series elastic actuation at the hip and leg. In general it was best to have a parallel elastic actuator at the hip, and a series elastic actuator at the leg. In the third design question, I asked if there is an energetic benefit to having an articulated spinal joint instead of a rigid spinal joint in a quadrupedal legged robot. I found that the answer was gait dependent. For symmetrical gaits, such as walking and trotting, the rigid and articulated spine models have similar energetic economy. For asymmetrical gaits, such as bounding and galloping, the articulated spine led to significant energy savings at high speeds. The combination of the above studies readily presents a methodology for simultaneously optimizing for motion and morphology in legged robots. Aside from giving insight into these specific design questions, the technique can also be extended to a variety of other design questions. The explorations in turn inform future hardware development by roboticists and help explain why animals in nature move in the ways that they do.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144074/1/yevyes_1.pd

    Development of a Gait Simulator for Testing Lower Limb Prostheses

    Get PDF

    A Dual-SLIP Model For Dynamic Walking In A Humanoid Over Uneven Terrain

    Get PDF
    • …
    corecore