270 research outputs found

    Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication

    Full text link
    The adoption of a Reconfigurable Intelligent Surface (RIS) for downlink multi-user communication from a multi-antenna base station is investigated in this paper. We develop energy-efficient designs for both the transmit power allocation and the phase shifts of the surface reflecting elements, subject to individual link budget guarantees for the mobile users. This leads to non-convex design optimization problems for which to tackle we propose two computationally affordable approaches, capitalizing on alternating maximization, gradient descent search, and sequential fractional programming. Specifically, one algorithm employs gradient descent for obtaining the RIS phase coefficients, and fractional programming for optimal transmit power allocation. Instead, the second algorithm employs sequential fractional programming for the optimization of the RIS phase shifts. In addition, a realistic power consumption model for RIS-based systems is presented, and the performance of the proposed methods is analyzed in a realistic outdoor environment. In particular, our results show that the proposed RIS-based resource allocation methods are able to provide up to 300%300\% higher energy efficiency, in comparison with the use of regular multi-antenna amplify-and-forward relaying.Comment: Accepted by IEEE TWC; additional materials on the topic are included in the 2018 conference publications at ICASSP (https://ieeexplore.ieee.org/abstract/document/8461496) and GLOBECOM 2018 (arXiv:1809.05397

    Energy Efficiency Fairness Beamforming Designs for MISO NOMA Systems

    Full text link
    In this paper, we propose two beamforming designs for a multiple-input single-output non-orthogonal multiple access system considering the energy efficiency (EE) fairness between users. In particular, two quantitative fairness-based designs are developed to maintain fairness between the users in terms of achieved EE: max-min energy efficiency (MMEE) and proportional fairness (PF) designs. While the MMEE-based design aims to maximize the minimum EE of the users in the system, the PF-based design aims to seek a good balance between the global energy efficiency of the system and the EE fairness between the users. Detailed simulation results indicate that our proposed designs offer many-fold EE improvements over the existing energy-efficient beamforming designs.Comment: IEEE WCNC 201

    Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area

    A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    IEEE Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area

    Optimization and Analysis of Wireless Powered Multi-antenna Cooperative Systems

    Get PDF
    In this paper, we consider a three-node cooperative wireless powered communication system consisting of a multi-antenna hybrid access point (H-AP) and a single-antenna relay and a single-antenna user. The energy constrained relay and user first harvest energy in the downlink and then the relay assists the user using the harvested power for information transmission in the uplink. The optimal energy beamforming vector and the time split between harvest and cooperation are investigated. To reduce the computational complexity, suboptimal designs are also studied, where closed-form expressions are derived for the energy beamforming vector and the time split. For comparison purposes, we also present a detailed performance analysis in terms of the achievable outage probability and the average throughput of an intuitive energy beamforming scheme, where the H-AP directs all the energy towards the user. The findings of the paper suggest that implementing multiple antennas at the H-AP can significantly improve the system performance, and the closed-form suboptimal energy beamforming vector and time split yields near optimal performance. Also, for the intuitive beamforming scheme, a diversity order of (N+1)/2 can be achieved, where N is the number of antennas at the H-AP
    corecore