1,866 research outputs found

    Coordinated Dynamic Spectrum Management of LTE-U and Wi-Fi Networks

    Full text link
    This paper investigates the co-existence of Wi-Fi and LTE in emerging unlicensed frequency bands which are intended to accommodate multiple radio access technologies. Wi-Fi and LTE are the two most prominent access technologies being deployed today, motivating further study of the inter-system interference arising in such shared spectrum scenarios as well as possible techniques for enabling improved co-existence. An analytical model for evaluating the baseline performance of co-existing Wi-Fi and LTE is developed and used to obtain baseline performance measures. The results show that both Wi-Fi and LTE networks cause significant interference to each other and that the degradation is dependent on a number of factors such as power levels and physical topology. The model-based results are partially validated via experimental evaluations using USRP based SDR platforms on the ORBIT testbed. Further, inter-network coordination with logically centralized radio resource management across Wi-Fi and LTE systems is proposed as a possible solution for improved co-existence. Numerical results are presented showing significant gains in both Wi-Fi and LTE performance with the proposed inter-network coordination approach.Comment: Accepted paper at IEEE DySPAN 201

    LTE-LAA ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•œ MAC ๊ณ„์ธต ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ์ตœ์„ฑํ˜„.3GPP long term evolution (LTE) operation in unlicensed spectrum is emerging as a promising technology in achieving higher data rate with LTE since ultra-wide unlicensed spectrum, e.g., about 500 MHz at 5โ€“6 GHz range, is available in most countries. Recently, 3GPP has finalized standardization of licensed-assisted access (LAA) for LTE operation in 5 GHz unlicensed spectrum, which has been a playground only for Wi-Fi. In this dissertation, we propose the following three strategies to enhance the performance of LAA: (1) Receiver-aware COT adaptation, (2) Collision-aware link adaptation, and (3) Power and energy detection threshold adaptation. First, LAA has a fixed maximum channel occupancy time (MCOT), which is the maximum continuous transmission time after channel sensing, while Wi-Fi may transmit for much shorter time duration. As a result, when Wi-Fi coexists with LAA, Wi-Fi airtime and throughput can be much less than those achieved when Wi-Fi coexists with another Wi-Fi. To guarantee fair airtime and improve throughput of Wi-Fi, we propose a receiver-aware channel occupancy time (COT) adaptation ( RACOTA ) algorithm, which observes Wi-Fi aggregate MAC protocol data unit (A-MPDU) frames and matches LAAs COT to the duration of A-MPDU frames when any Wi-Fi receiver has more data to receive. Moreover, RACOTA detects saturation of Wi-Fi traffic and adjusts COT only if Wi-Fi traffic is saturated. We prototype saturation detection algorithm of RACOTA with commercial off-the-shelf Wi-Fi device and show that RACOTA detects saturation of Wi-Fi networks accurately. Through ns-3 simulations, we demonstrate that RACOTA provides airtime fairness between LAA and Wi-Fi while achieves up to 334% Wi-Fi throughput gain. Second, the link adaptation scheme of the conventional LTE, adaptive modulation and coding (AMC), cannot operate well in the unlicensed band due to intermittent collisions. Intermittent collisions make LAA eNB lower modulation and coding scheme (MCS) for the subsequent transmission and such unnecessarily lowered MCS significantly degrades spectral efficiency. To address this problem, we propose a collision-aware link adaptation algorithm ( COALA ). COALA exploits k-means unsupervised clustering algorithm to discriminate channel quality indicator (CQI) reports which are measured with collision interference and selects the most suitable MCS for the next transmission. By prototype-based experiments, we demonstrate that COALA detects collisions accurately, and by conducting ns-3 simulations in various scenarios, we also show that COALA achieves up to 74.9% higher user perceived throughput than AMC. Finally, we propose PETAL to mitigate the negative impact of spatial reuse (SR) operation. We first design the baseline algorithm, which operates SR aggressively, and show that the baseline algorithm degrades the throughput performance severely when the UE is close to an interferer. Our proposed algorithm PETAL estimates and compares the spectral efficiency for the SR operation and non-SR operation. Then, PETAL operates SR only if the spectral efficiency of SR operation is expected to be higher than the case of non-SR operation. Our simulation verifies the performance of PETAL in various scenarios. When two pair of an eNB and a UE coexists, PETAL improves the throughput by up to 329% over the baseline algorithm. In summary, we identify interesting problems that appeared with LAA and shows the impact of the problems through the extensive simulations and propose compelling algorithms to solve the problems. The airtime fairness between Wi-Fi and LAA is improved with COT adaptation. Furthermore, link adaptation accuracy and SR operation are improved by exploiting CQI reports history. The performance of the proposed schemes is verified by system level simulation.๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ์˜ LTE ๋™์ž‘์€ ๋” ๋†’์€ ๋ฐ์ดํ„ฐ ์ „์†ก๋ฅ ์„ ๋‹ฌ์„ฑํ•˜๋Š” ์œ ๋งํ•œ ๊ธฐ์ˆ ๋กœ ๋ถ€๊ฐ๋˜๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ 3GPP๋Š” ๊ธฐ์กด Wi-Fi ๊ธฐ์ˆ ์ด ์‚ฌ์šฉํ•˜๋˜ 5 GHz ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ LTE๋ฅผ ์‚ฌ์šฉํ•˜๋Š” licensed-assisted access (LAA) ๊ธฐ์ˆ ์˜ ํ‘œ์ค€ํ™”๋ฅผ ์™„๋ฃŒํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” LAA์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์„ธ ๊ฐ€์ง€ ์ „๋žต์„ ์ œ์•ˆํ•œ๋‹ค: (1) ์ˆ˜์‹ ๊ธฐ ์ธ์‹ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„ ์ ์‘, (2) ์ถฉ๋Œ ์ธ์‹ ๋งํฌ ์ ์‘, (3) ์ „๋ ฅ ๋ฐ ์—๋„ˆ์ง€ ๊ฒ€์ถœ ์—ญ์น˜ ์ ์‘. ์ฒซ์งธ, LAA๋Š” ๊ณ ์ •๋œ ์ตœ๋Œ€ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ  ๊ทธ ์‹œ๊ฐ„ ๋งŒํผ ์—ฐ์†์ ์œผ๋กœ ์ „์†กํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐ˜๋ฉด, Wi-Fi๋Š” ๋น„๊ต์  ์งง์€ ์‹œ๊ฐ„ ๋™์•ˆ๋งŒ ์—ฐ์†์ ์œผ๋กœ ์ „์†กํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ Wi-Fi๊ฐ€ LAA์™€ ๊ณต์กดํ•  ๋•Œ Wi-Fi์˜ airtime๊ณผ ์ˆ˜์œจ ์„ฑ๋Šฅ์€ Wi-Fi๊ฐ€ ๋˜ ๋‹ค๋ฅธ Wi-Fi์™€ ๊ณต์กดํ•  ๋•Œ์— ๋น„ํ•˜์—ฌ ์ €ํ•˜๋˜๊ฒŒ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ๋Š” Wi-Fi์˜ airtime๊ณผ ์ˆ˜์œจ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ Wi-Fi์˜ A-MPDU ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„์— ๋งž์ถ”์–ด LAA์˜ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„์„ ์กฐ์ ˆํ•˜๋Š” ์ˆ˜์‹ ๊ธฐ ์ธ์‹ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„ ์ ์‘ ๊ธฐ๋ฒ•์ธ RACOTA๋ฅผ ์ œ์•ˆํ•œ๋‹ค. RACOTA ๋Š” ํฌํ™” ๊ฐ์ง€ ๊ฒฐ๊ณผ Wi-Fi ์ˆ˜์‹ ๊ธฐ๊ฐ€ ๋” ๋ฐ›์„ ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ๋‹ค๊ณ  ํŒ๋‹จ๋  ๋•Œ์—๋งŒ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„์„ ์กฐ์ ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” RACOTA ์˜ ํฌํ™” ๊ฐ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ƒ์šฉ Wi-Fi ์žฅ๋น„์— ๊ตฌํ˜„ํ•˜์—ฌ ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์‹ค์ธก์„ ํ†ตํ•ด RACOTA ๊ฐ€ ๊ณต์กดํ•˜๋Š” Wi-Fi์˜ ํฌํ™” ์—ฌ๋ถ€๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ฐ์ง€ํ•ด๋ƒ„์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ ์šฐ๋ฆฌ๋Š” ns-3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ RACOTA ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” LAA๊ฐ€ ๊ณต์กดํ•˜๋Š” Wi-Fi์—๊ฒŒ ๊ณต์ •ํ•œ airtime์„ ์ œ๊ณตํ•˜๊ณ  ๊ธฐ์กด LAA์™€ ๊ณต์กดํ•˜๋Š” Wi-Fi ๋Œ€๋น„ ์ตœ๋Œ€ 334%์˜ Wi-Fi ์ˆ˜์œจ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๊ฐ€์ ธ์˜ด์„ ๋ณด์ธ๋‹ค. ๋‘˜์งธ, ๊ฐ„ํ—์ ์ธ ์ถฉ๋Œ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ๋Š” ๊ธฐ์กด LTE์˜ ๋งํฌ ์ ์‘ ๊ธฐ๋ฒ•์ธ adaptive modulation and coding (AMC)์ด ์ž˜ ๋™์ž‘ํ•˜์ง€ ์•Š์„ ์ˆ˜ ์žˆ๋‹ค. ๊ฐ„ํ—์ ์ธ ์ถฉ๋Œ์€ LAA ๊ธฐ์ง€๊ตญ์œผ๋กœ ํ•˜์—ฌ๊ธˆ modulation and coding scheme (MCS)์„ ๋‚ฎ์ถ”์–ด์„œ ๋‹ค์Œ ์ „์†ก์„ ํ•˜๋„๋ก ํ•˜๋Š”๋ฐ ๋‹ค์Œ ์ „์†ก ์‹œ์— ์ถฉ๋Œ์ด ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š”๋‹ค๋ฉด ๋ถˆํ•„์š”ํ•˜๊ฒŒ ๋‚ฎ์ถ˜ MCS๋กœ ์ธํ•ด ์ฃผํŒŒ์ˆ˜ ํšจ์œจ์ด ํฌ๊ฒŒ ์ €ํ•˜๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ์œ„ํ•ด ์šฐ๋ฆฌ๋Š” ์ถฉ๋Œ ์ธ์‹ ๋งํฌ ์ ์‘ ๊ธฐ๋ฒ•์ธ COALA ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. COALA ๋Š” k-means ๋ฌด๊ฐ๋… ํด๋Ÿฌ์Šคํ„ฐ๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ channel quality indicator (CQI) ๋ฆฌํฌํŠธ ์ค‘ ์ถฉ๋Œ ๊ฐ„์„ญ์— ์˜ํ–ฅ์„ ๋ฐ›์€ CQI ๋ฆฌํฌํŠธ๋“ค์„ ๊ตฌ๋ณ„ํ•ด๋‚ด๊ณ  ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์Œ ์ „์†ก์„ ์œ„ํ•œ ์ตœ์ ์˜ MCS๋ฅผ ์„ ํƒํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ์‹ค์ธก์„ ํ†ตํ•˜์—ฌ COALA ๊ฐ€ ์ •ํ™•ํ•˜๊ฒŒ ์ถฉ๋Œ์„ ๊ฐ์ง€ํ•ด๋ƒ„์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ ์šฐ๋ฆฌ๋Š” ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ์˜ ns-3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ COALA ๊ฐ€ AMC ๋Œ€๋น„ ์ตœ๋Œ€ 74.9%์˜ ์‚ฌ์šฉ์ž ์ธ์‹ ์ˆ˜์œจ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๊ฐ€์ ธ์˜ด์„ ๋ณด์ธ๋‹ค. ์…‹์งธ, ์šฐ๋ฆฌ๋Š” ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์˜ ๋ถ€์ž‘์šฉ์„ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ˆ˜์‹  ๋‹จ๋ง์„ ๊ณ ๋ คํ•˜์—ฌ ์ „์†ก ํŒŒ์›Œ ๋ฐ ์—๋„ˆ์ง€ ๊ฒ€์ถœ ์—ญ์น˜๋ฅผ ์ ์‘์ ์œผ๋กœ ์กฐ์ ˆํ•˜๋Š” PETAL ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋จผ์ € ์ˆ˜์‹  ๋‹จ๋ง์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ณ  ๊ณต๊ฒฉ์ ์œผ๋กœ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์„ ํ•˜๋Š” baseline ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์„ค๊ณ„ํ•˜๊ณ  ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ ์ˆ˜์‹  ๋‹จ๋ง์ด ๊ฐ„์„ญ์›์— ๊ฐ€๊นŒ์šด ๊ฒฝ์šฐ baseline ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์ด ์‹ฌ๊ฐํ•˜๊ฒŒ ์—ดํ™”๋จ์„ ๋ณด์ธ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ PETAL ์€ ์ˆ˜์‹  ๋‹จ๋ง๋กœ๋ถ€ํ„ฐ ๋ฐ›์€ CQI ๋ฆฌํฌํŠธ ์ •๋ณด์™€ ์ฑ„๋„ ์ ์œ  ์‹œ์ ๊นŒ์ง€์˜ ํ‰๊ท  ๋Œ€๊ธฐ ์‹œ๊ฐ„์„ ์ด์šฉํ•˜์—ฌ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์„ ํ•  ๋•Œ ์˜ˆ์ƒ๋˜๋Š” ์ฃผํŒŒ์ˆ˜ ํšจ์œจ๊ณผ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์„ ํ•˜์ง€ ์•Š์„ ๋•Œ ์˜ˆ์ƒ๋˜๋Š” ์ฃผํŒŒ์ˆ˜ ํšจ์œจ์„ ๋น„๊ตํ•˜์—ฌ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์„ ํ•  ๋•Œ ์˜ˆ์ƒ๋˜๋Š” ์ฃผํŒŒ์ˆ˜ ํšจ์œจ์ด ๋” ํด ๋•Œ์—๋งŒ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์„ ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ์˜ ns-3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ PETAL ์ด baseline ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋Œ€๋น„ ์ตœ๋Œ€ 329%์˜ ์ˆ˜์œจ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๊ฐ€์ ธ์˜ด์„ ๋ณด์ธ๋‹ค. ์š”์•ฝํ•˜์ž๋ฉด, ์šฐ๋ฆฌ๋Š” LAA์˜ ๋“ฑ์žฅ๊ณผ ํ•จ๊ป˜ ์ƒˆ๋กญ๊ฒŒ ๋Œ€๋‘๋˜๋Š” ํฅ๋ฏธ๋กœ์šด ๋ฌธ์ œ๋“ค์„ ํ™•์ธํ•˜๊ณ  ๋ฌธ์ œ๋“ค์˜ ์‹ฌ๊ฐ์„ฑ์„ ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ ์‚ดํŽด๋ณด๊ณ  ์ด ๋Ÿฌํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. Wi-Fi์™€ LAA ์‚ฌ์ด์˜ airtime ๊ณต์ •์„ฑ์€ LAA์˜ ์—ฐ์† ์ „์†ก ์‹œ๊ฐ„์„ ์ ์‘์ ์œผ๋กœ ์กฐ์ ˆํ•˜์—ฌ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๋งํฌ ์ ์‘ ์ •ํ™•๋„์™€ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์˜ ํšจ์œจ์„ฑ์€ CQI ๋ฆฌํฌํŠธ๋“ค์˜ ๋ถ„ํฌ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์˜ ์„ฑ๋Šฅ์€ ์‹œ์Šคํ…œ ๋ ˆ๋ฒจ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ ๊ฒ€์ฆ๋˜์—ˆ๋‹ค.1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Overview of Existing Approaches . . . . . . . . . . . . . . . . . . . 2 1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.1 RACOTA: Receiver-Aware Channel Occupancy Time Adaptation for LTE-LAA . . . . . . . 2 1.3.2 COALA: Collision-Aware Link Adaptation for LTE-LAA . . 3 1.3.3 PETAL: Power and Energy Detection Threshold Adaptation for LAA . . . . . . . . . . . . . . 4 1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . 5 2 RACOTA:Receiver-AwareChannelOccupancyTimeAdaptationforLTE- LAA 6 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 MAC Mechanisms of Wi-Fi and LAA . . . . . . . . . . . . . . . . . 10 2.3.1 Wi-Fi MAC Operation . . . . . . . . . . . . . . . . . . . . . 10 2.3.2 LAA Listen-Before-Talk (LBT) Mechanism . . . . . . . . . . 11 2.3.3 Wide Bandwidth Operation . . . . . . . . . . . . . . . . . . 13 2.4 Coexistence performance of LAA and Wi-Fi . . . . . . . . . . . . . . 14 2.4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.2 Unfairness between LAA and Wi-Fi . . . . . . . . . . . . . . 15 2.5 Receiver-Aware COT Adaptation Algorithm . . . . . . . . . . . . . . 17 2.5.1 Saturation Detection (SD) . . . . . . . . . . . . . . . . . . . 20 2.5.2 Receiver-Aware COT Decision . . . . . . . . . . . . . . . . . 22 2.6 Performance Evaluation of SD Algorithm . . . . . . . . . . . . . . . 22 2.6.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . 22 2.6.2 PPDUMaxTime Detection . . . . . . . . . . . . . . . . . . . 24 2.6.3 Saturation Detection Performance . . . . . . . . . . . . . . . 26 2.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.7.1 Saturated Traffic Scenario . . . . . . . . . . . . . . . . . . . 28 2.7.2 Unsaturated Traffic Scenario . . . . . . . . . . . . . . . . . . 30 2.7.3 Bursty Traffic Scenario . . . . . . . . . . . . . . . . . . . . . 30 2.7.4 Heterogeneous Wi-Fi Traffic Generation Scenario . . . . . . 31 2.7.5 Multiple Node Scenario . . . . . . . . . . . . . . . . . . . . 34 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 COALA: Collision-Aware Link Adaptation for LTE-LAA 36 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 Backgound and Related Work . . . . . . . . . . . . . . . . . . . . . 38 3.2.1 LAA and LBT . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.2 AMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.3 Inter-Cell Interference Cancellation . . . . . . . . . . . . . . 39 3.2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 Impact of Collision to Link Adaptation . . . . . . . . . . . . . . . . . 41 3.4 COALA: Collision-aware Link Adaptation . . . . . . . . . . . . . . . 47 3.4.1 CQI Clustering Algorithm . . . . . . . . . . . . . . . . . . . 48 3.4.2 Collision Detection and Collision Probability Estimation . . . 48 3.4.3 Suitable MCS Selection . . . . . . . . . . . . . . . . . . . . 49 3.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5.1 Prototype-based Feasibility Study . . . . . . . . . . . . . . . 51 3.5.2 Contention Collision with LAA eNBs . . . . . . . . . . . . . 53 3.5.3 Hidden Collision . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5.4 Bursty Hidden Collision . . . . . . . . . . . . . . . . . . . . 58 3.5.5 Contention Collision with Wi-Fi Transmitters . . . . . . . . . 58 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4 PETAL: Power and Energy Detection Threshold Adaptation for LAA 62 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2 Backgound and Related Work . . . . . . . . . . . . . . . . . . . . . 64 4.2.1 Energy Detection Threshold . . . . . . . . . . . . . . . . . . 64 4.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3 Baseline Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.1 Design of the Baseline Algorithm . . . . . . . . . . . . . . . 65 4.3.2 Performance of the Baseline Algorithm . . . . . . . . . . . . 66 4.4 PETAL: Power and Energy Detection Threshold Adaptation . . . . . 68 4.4.1 CQI Management . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4.2 Success Probability and Airtime Ratio Estimation . . . . . . . 69 4.4.3 CQI Clustering Algorithm . . . . . . . . . . . . . . . . . . . 71 4.4.4 SR Decision . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.5.1 Two Cell Scenario . . . . . . . . . . . . . . . . . . . . . . . 73 4.5.2 Coexistence with Standard LAA . . . . . . . . . . . . . . . . 75 4.5.3 Four Cell Scenario . . . . . . . . . . . . . . . . . . . . . . . 76 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5 Concluding Remarks 79 5.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 79 Abstract (In Korean) 88 ๊ฐ์‚ฌ์˜ ๊ธ€ 92Docto

    ๋น„๋ฉดํ—ˆ๋Œ€์—ญ ์…€๋ฃฐ๋ผ ํ†ต์‹ ์˜ ์„ฑ๋Šฅ ๋ถ„์„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ฒ• ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ๋ฐ•์„ธ์›….3GPP๋Š” LAA (licensed-assisted access)๋ผ๊ณ ํ•˜๋Š” 5GHz ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ LTE๋ฅผ ๊ฐœ๋ฐœํ–ˆ์Šต๋‹ˆ๋‹ค. LAA๋Š” ์ถฉ๋Œ ๋ฐฉ์ง€ ๊ธฐ๋Šฅ์„ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด Wi-Fi์˜ CSMA / CA (Carrier Sense Multiple Access with Collision avoidance)์™€ ์œ ์‚ฌํ•œ LBT (Listen Before Talk) ์ž‘์—…์„ ์ฑ„ํƒํ•˜์—ฌ ๊ฐ LAA ๋‹ค์šด ๋งํฌ ๋ฒ„์ŠคํŠธ์˜ ํ”„๋ ˆ์ž„ ๊ตฌ์กฐ ์˜ค๋ฒ„ ํ—ค๋“œ๋Š” ๊ฐ๊ฐ์˜ ์ข…๋ฃŒ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง‘๋‹ˆ๋‹ค. ์ด์ „ LBT ์ž‘์—…. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์„ ๋ถ„์„ํ•˜๊ธฐ์œ„ํ•œ ์ˆ˜์น˜ ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์˜ ๋‹ค์Œ ๋‘ ๊ฐ€์ง€ ํ–ฅ์ƒ๋œ ๊ธฐ๋Šฅ์„ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ๋Œ€์—ญ ๋…๋ฆฝํ˜• ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ . ๊ธฐ์กด WiFi ๋ถ„์„ ๋ชจ๋ธ๋กœ๋Š” LAA์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•  ์ˆ˜ ์—†๋‹ค๋Š” ์ ์„ ๊ฐ์•ˆํ•˜์—ฌ ๋ณธ ์„œ์‹ ์—์„œ๋Š” ์—ฌ๋Ÿฌ ๊ฒฝํ•ฉ ์ง„ํ™” ๋œ NodeB๋กœ ๊ตฌ์„ฑ๋œ LAA ๋„คํŠธ์›Œํฌ์˜ ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•˜๊ธฐ์œ„ํ•œ ์ƒˆ๋กœ์šด Markov ์ฒด์ธ ๊ธฐ๋ฐ˜ ๋ถ„์„ ๋ชจ๋ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. LAA ํ”„๋ ˆ์ž„ ๊ตฌ์กฐ ์˜ค๋ฒ„ ํ—ค๋“œ์˜ ๋ณ€ํ˜•. LTE-LAA๋Š” LTE์—์„œ ์ƒ์† ๋œ ์†๋„ ์ ์‘ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์œ„ํ•ด ์ ์‘ ๋ณ€์กฐ ๋ฐ ์ฝ”๋”ฉ (AMC) ์„ ์ฑ„ํƒํ•ฉ๋‹ˆ๋‹ค. AMC๋Š” ์ง„ํ™” ๋œ nodeB (eNB)๊ฐ€ ํ˜„์žฌ ์ „์†ก์˜ ์ฑ„๋„ ํ’ˆ์งˆ ํ‘œ์‹œ๊ธฐ ํ”ผ๋“œ ๋ฐฑ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋‹ค์Œ ์ „์†ก์„์œ„ํ•œ ๋ณ€์กฐ ๋ฐ ์ฝ”๋”ฉ ๋ฐฉ์‹ (MCS)์„ ์„ ํƒํ•˜๋„๋ก ๋•์Šต๋‹ˆ๋‹ค. ๋ผ์ด์„ ์Šค ๋Œ€์—ญ์—์„œ ๋™์ž‘ํ•˜๋Š” ๊ธฐ์กด LTE์˜ ๊ฒฝ์šฐ ๋…ธ๋“œ ๊ฒฝํ•ฉ ๋ฌธ์ œ๊ฐ€ ์—†์œผ๋ฉฐ AMC ์„ฑ๋Šฅ ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ž˜ ์ง„ํ–‰๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ ๋™์ž‘ํ•˜๋Š” LTE-LAA ์˜ ๊ฒฝ์šฐ ์ถฉ๋Œ ๋ฌธ์ œ๋กœ ์ธํ•ด AMC ์„ฑ๋Šฅ์ด ์ œ๋Œ€๋กœ ์ฒ˜๋ฆฌ๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. ์ด ํŽธ์ง€์—์„œ๋Š” AMC ์šด์˜์„ ๊ณ ๋ คํ•œ ํ˜„์‹ค์ ์ธ ์ฑ„๋„ ๋ชจ๋ธ์—์„œ LTELAA ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•˜๊ธฐ์œ„ํ•œ ์ƒˆ๋กœ ์šด Markov ์ฒด์ธ ๊ธฐ๋ฐ˜ ๋ถ„์„ ๋ชจ๋ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ๋ฌด์„  ๋„คํŠธ์›Œํฌ ๋ถ„์„์— ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” Rayleigh ํŽ˜์ด๋”ฉ ์ฑ„๋„ ๋ชจ๋ธ์„ ์ฑ„ํƒํ•˜๊ณ  ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ns-3 ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ์—์„œ ์–ป์€ ๊ฒฐ๊ณผ ์™€ ๋น„๊ตํ•ฉ๋‹ˆ๋‹ค. ๋น„๊ต ๊ฒฐ๊ณผ๋Š” ํ‰๊ท  ์ •ํ™•๋„๊ฐ€ 99.5%๋กœ ๋ถ„์„ ๋ชจ๋ธ์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ๋†’์€ ๋ฐ์ดํ„ฐ ์†๋„์— ๋Œ€ํ•œ ์š”๊ตฌ ์‚ฌํ•ญ์œผ๋กœ ์ธํ•ด 3GPP๋Š” LTE-LAA๋ฅผ์œ„ํ•œ ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ์šด์˜์„ ์ œ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ๋™์ž‘์€ OOBE์— ์ทจ์•ฝํ•˜๊ณ  ์ œํ•œ๋œ ์ „์†ก ์ „๋ ฅ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋น„ํšจ์œจ์  ์ธ ์ฑ„๋„ ์‚ฌ์šฉ์„ ์ดˆ๋ž˜ํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ฑ„๋„ ํšจ์œจ์„ ๋†’์ด๊ธฐ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ์ œ์•ˆํ•œ ๋ฐฉ์‹์€ ์ „์†ก ๋ฒ„์ŠคํŠธ๋ฅผ ์—ฌ๋Ÿฌ ๊ฐœ๋กœ ๋ถ„ํ• ํ•˜๊ณ  ์ „์†ก ์ „๋ ฅ ์ œํ•œ์„ ์ถฉ์กฑํ•˜๋ฉด์„œ ์งง์€ ์„œ๋ธŒ ํ”„๋ ˆ์ž„ ์ „์†ก ์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ์ฑ„๋„ ์ƒํƒœ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ํŒ๋‹จํ•˜์—ฌ OOBE ๋ฌธ์ œ๋ฅผ ๊ทน๋ณต ํ•  ์ˆ˜์žˆ๋Š” ์—๋„ˆ์ง€ ๊ฐ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์†Œํ”„ํŠธ์›จ์–ด ์ •์˜ ๋ผ๋””์˜ค๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ํ”„๋กœํ†  ํƒ€์ž…์€ 99% ์ด์ƒ์˜ ์ •ํ™•๋„๋กœ ์ฑ„๋„ ์ƒํƒœ๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ์—๋„ˆ์ง€ ๊ฐ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์‹คํ–‰ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ns-3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ œ์•ˆ ๋œ ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ์•ก์„ธ์Šค ๋ฐฉ์‹์ด ๊ธฐ์กด LBT ์œ ํ˜• A ๋ฐ ์œ ํ˜• B์— ๋น„ํ•ด ์‚ฌ์šฉ์ž์ธ์ง€ ์ฒ˜๋ฆฌ๋Ÿ‰์—์„œ ๊ฐ๊ฐ ์ตœ๋Œ€ 59% ๋ฐ 21.5%์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๋‹ฌ์„ฑ ํ•จ์„ ํ™•์ธํ–ˆ์Šต๋‹ˆ๋‹ค. ๋ ˆ๊ฑฐ์‹œ LAA์—๋Š” ๋ฐฐํฌ ๋ฌธ์ œ๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— 3GPP์™€ MulteFire ์–ผ๋ผ์ด์–ธ์Šค๋Š” ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ๋…๋ฆฝํ˜• ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹  ์‹œ์Šค ํ…œ์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ข…๋ž˜์˜ ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ๋…๋ฆฝํ˜• ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹  ์‹œ์Šคํ…œ์€ ์ƒํ–ฅ ๋งํฌ ์ œ์–ด ๋ฉ”์‹œ์ง€์˜ ์ „์†ก ํ™•๋ฅ ์ด ๋‚ฎ๋‹ค. ์ด ๋…ผ๋ฌธ์€ Wi-Fi ๋ธ”๋ก ACK ํ”„๋ ˆ์ž„์— ์—… ๋งํฌ ์ œ์–ด ๋ฉ”์‹œ์ง€๋ฅผ ๋„ฃ๋Š” W ARQ : Wi-Fi ์ง€์› HARQ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ W-ARQ์˜ ์ฒ˜ ๋ฆฌ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ณ‘๋ ฌ HARQ ๋ฐ ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋œ Minstrel์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ธฐ์กด MulteFire๊ฐ€ ๊ฑฐ์˜ ์ œ๋กœ ์ฒ˜๋ฆฌ๋Ÿ‰ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ๊ฒฝ์šฐ ๋†’์€ ์ฒ˜๋ฆฌ๋Ÿ‰ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์š”์•ฝํ•˜๋ฉด ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์˜ ์„ฑ๋Šฅ์„ ๋ถ„์„ ํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ ๋œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์šฐ๋ฆฌ๋Š” ๋ ˆ๊ฑฐ์‹œ ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ๋™์ž‘์„ ์ฃผ์žฅํ•˜๋ฉฐ ๋น„๋ฉดํ—ˆ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์˜ HARQ๋Š” ํšจ์œจ์ ์ด์ง€ ์•Š๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ, ์šฐ๋ฆฌ๋Š” ์ตœ์ฒจ๋‹จ ๊ธฐ ์ˆ ์— ๋น„ํ•ด UPT ๋ฐ ์ฒ˜๋ฆฌ๋Ÿ‰๊ณผ ๊ฐ™์€ ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๋‹ฌ์„ฑํ•˜๋Š” OOBE ์ธ์‹ ์ถ”๊ฐ€ ์•ก์„ธ์Šค ๋ฐ W-ARQ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค.3GPP has developed 5 GHz unlicensed band LTE, referred to as licensed-assisted access (LAA). LAA adopts listen before talk (LBT) operation, resembling Wi-Fis carrier sense multiple access with collision avoidance (CSMA/CA), to enable collision avoidance capability, while the frame structure overhead of each LAA downlink burst varies with the ending time of each preceding LBT operation. In this dissertation, we propose numerical model to analyze unlicensed band cellular communication. Next, we consider the following two enhancements of unlicensed band cellular communication: (i) out-of-band emission (OOBE) aware additional carrier access, and (ii) Wi-Fi assisted hybrid automatic repeat request (H-ARQ) for unlicensed-band stand-alone cellular communication. Given that, existing analytic models of Wi-Fi cannot be used to evaluate the performance of LAA, in this letter, we propose a novel Markov chain-based analytic model to analyze the performance of LAA network composed of multiple contending evolved NodeBs by considering the variation of the LAA frame structure overhead. LTE-LAA adopts adaptive modulation and coding (AMC) for the rate adaptation algorithm inherited from LTE. AMC helps the evolved nodeB (eNB) to select a modulation and coding scheme (MCS) for the next transmission using the channel quality indicator feedback of the current transmission. For the conventional LTE operating in the licensed band, there is no node contention problem and AMC performance has been well studied. However, in the case of LTE-LAA operating in the unlicensed band, AMC performance has not been properly addressed due to the collision problem. In this letter, we propose a novel Markov chain-based analysis model for analyzing LTELAA performance under a realistic channel model considering AMC operation. We adopt Rayleigh fading channel model widely used in wireless network analysis, and compare our analysis results with the results obtained from ns-3 simulator. Comparison results show an average accuracy of 99.5%, which demonstrates the accuracy of our analysis model. Due to the requirement for a high data rate, the 3GPP has provided multi-carrier operation for LTE-LAA. However, multi-carrier operation is susceptible to OOBE and uses limited transmission power, resulting in inefficient channel usage. This paper proposes a novel multi-carrier access scheme to enhance channel efficiency. Our proposed scheme divides a transmission burst into multiple ones and uses short subframe transmission while meeting the transmission power limitation. In addition, we propose an energy detection algorithm to overcome the OOBE problem by deciding the channel status accurately. Our prototype using software-defined radio shows the feasibility and performance of the energy detection algorithm that determines the channel status with over 99% accuracy. Through ns-3 simulation, we confirm that the proposed multi-carrier access scheme achieves up to 59% and 21.5% performance gain in userperceived throughput compared with the conventional LBT type A and type B, respectively. Since the legacy LAA has deployment problem, 3GPP and MulteFire alliance proposed unlicensed band stand-alone cellular communication system. However, conventional unlicensed band stand-alone cellular communication system has low transmission probability of uplink control messages. This disertation proposes W-ARQ: Wi-Fi assisted HARQ which put uplink control messages into Wi-Fi block ACK frame. In addition we propose parallel HARQ and clustered Minstrel to enhance throughput performance of W-ARQ. Our proposed algorithm shows high throughput performance where conventional MulteFire shows almost zero throughput performance. In summary, we analyze the performance of unlicensed-band cellular communication. By using the proposed model, we insist the legacy multi-carrier operation and HARQ of unlicensed cellular communication is not efficient. By this reason, we propose OOBE aware additional access and W-ARQ which achievee enhancements of network performance such as UPT and throughput compared with state-of-the-art techniques.Abstract i Contents iv List of Tables vii List of Figures viii 1 Introduction 1 1.1 Unlicensed Band Communication System . . . . . . . . . . . . . . . 1 1.2 Overview of Existing Approaches . . . . . . . . . . . . . . . . . . . 2 1.2.1 License-assisted access . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Further LAA . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Non-3GPP Unlicensed Band Cellular Communication . . . . 6 1.3 Main Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Performance Analysis of LTE-LAA . . . . . . . . . . . . . . 6 1.3.2 Out-of-Band Emission Aware Additional Carrier Access for LTE-LAA Network . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3 W-ARQ: Wi-Fi Assisted HARQ for Unlicensed Band StandAlone Cellular Communication System . . . . . . . . . . . . 8 1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . 8 2 Performance Analysis of LTE-LAA network 10 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Proposed Markov-Chain Model . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Markov Property . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 Markov Chain Model for EPS Type Variation . . . . . . . . . 16 2.3.3 LAA Network Throughput Estimation . . . . . . . . . . . . . 18 2.4 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Out-of-Band Emission Aware Additional Carrier Access for LTE-LAA Network 35 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Related work and Background . . . . . . . . . . . . . . . . . . . . . 37 3.2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.2 Listen Before Talk . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.3 Out-of-Band Emission . . . . . . . . . . . . . . . . . . . . . 39 3.3 Multi-carrier Operation of LTE-LAA . . . . . . . . . . . . . . . . . . 39 3.4 Carrier Sensing considering Out-of-Band Emission . . . . . . . . . . 47 3.4.1 Energy Detection Algorithm . . . . . . . . . . . . . . . . . . 49 3.4.2 Nominal Band Energy Detection . . . . . . . . . . . . . . . . 50 3.4.3 OOBE-Free Region Energy Detection . . . . . . . . . . . . . 51 3.5 Additional Carrier Access Scheme . . . . . . . . . . . . . . . . . . . 52 3.5.1 Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.2 Transmission Power Limitation . . . . . . . . . . . . . . . . 53 3.5.3 Dividing Transmission Burst . . . . . . . . . . . . . . . . . . 54 3.5.4 Short Subframe Decision . . . . . . . . . . . . . . . . . . . . 54 3.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.6.1 Performance of Energy Detection considering OOBE . . . . . 57 3.6.2 Simulation Environments . . . . . . . . . . . . . . . . . . . . 57 3.6.3 Performance of Proposed Carrier Access Scheme . . . . . . . 58 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 W-ARQ: Wi-Fi Assisted HARQ for Unlicensed Band Stand-Alone Cellular Communication System 66 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4 W-ARQ: Wi-Fi assisted HARQ for Unlicensed Band Stand-Alone Cellular Communication System . . . . . . . . . . . . . . . . . . . . . . 69 4.4.1 Parallel HARQ . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.4.2 Clustered Minstrel . . . . . . . . . . . . . . . . . . . . . . . 72 4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5 Concluding Remarks 80 5.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Abstract (In Korean) 90 ๊ฐ์‚ฌ์˜ ๊ธ€ 93Docto

    Fair Coexistence of Scheduled and Random Access Wireless Networks: Unlicensed LTE/WiFi

    Get PDF
    We study the fair coexistence of scheduled and random access transmitters sharing the same frequency channel. Interest in coexistence is topical due to the need for emerging unlicensed LTE technologies to coexist fairly with WiFi. However, this interest is not confined to LTE/WiFi as coexistence is likely to become increasingly commonplace in IoT networks and beyond 5G. In this article we show that mixing scheduled and random access incurs and inherent throughput/delay cost, the cost of heterogeneity. We derive the joint proportional fair rate allocation, which casts useful light on current LTE/WiFi discussions. We present experimental results on inter-technology detection and consider the impact of imperfect carrier sensing.Comment: 14 pages, 8 figures, journa

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    ยฉ 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements

    A novel MAC Protocol for Cognitive Radio Networks

    Get PDF
    In Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy from the University of BedfordshireThe scarcity of bandwidth in the radio spectrum has become more vital since the demand for wireless applications has increased. Most of the spectrum bands have been allocated although many studies have shown that these bands are significantly underutilized most of the time. The problem of unavailability of spectrum bands and the inefficiency in their utilization have been smartly addressed by the cognitive radio (CR) technology which is an opportunistic network that senses the environment, observes the network changes, and then uses knowledge gained from the prior interaction with the network to make intelligent decisions by dynamically adapting transmission characteristics. In this thesis, recent research and survey about the advances in theory and applications of cognitive radio technology has been reviewed. The thesis starts with the essential background on cognitive radio techniques and systems and discusses those characteristics of CR technology, such as standards, applications and challenges that all can help make software radio more personal. It then presents advanced level material by extensively reviewing the work done so far in the area of cognitive radio networks and more specifically in medium access control (MAC) protocol of CR. The list of references will be useful to both researchers and practitioners in this area. Also, it can be adopted as a graduate-level textbook for an advanced course on wireless communication networks. The development of new technologies such as Wi-Fi, cellular phones, Bluetooth, TV broadcasts and satellite has created immense demand for radio spectrum which is a limited natural resource ranging from 30KHz to 300GHz. For every wireless application, some portion of the radio spectrum needs to be purchased, and the Federal Communication Commission (FCC) allocates the spectrum for some fee for such services. This static allocation of the radio spectrum has led to various problems such as saturation in some bands, scarcity, and lack of radio resources to new wireless applications. Most of the frequencies in the radio spectrum have been allocated although many studies have shown that the allocated bands are not being used efficiently. The CR technology is one of the effective solutions to the shortage of spectrum and the inefficiency of its utilization. In this thesis, a detailed investigation on issues related to the protocol design for cognitive radio networks with particular emphasis on the MAC layer is presented. A novel Dynamic and Decentralized and Hybrid MAC (DDH-MAC) protocol that lies between the CR MAC protocol families of globally available common control channel (GCCC) and local control channel (non-GCCC). First, a multi-access channel MAC protocol, which integrates the best features of both GCCC and non-GCCC, is proposed. Second, an enhancement to the protocol is proposed by enabling it to access more than one control channel at the same time. The cognitive users/secondary users (SUs) always have access to one control channel and they can identify and exploit the vacant channels by dynamically switching across the different control channels. Third, rapid and efficient exchange of CR control information has been proposed to reduce delays due to the opportunistic nature of CR. We have calculated the pre-transmission time for CR and investigate how this time can have a significant effect on nodes holding a delay sensitive data. Fourth, an analytical model, including a Markov chain model, has been proposed. This analytical model will rigorously analyse the performance of our proposed DDH-MAC protocol in terms of aggregate throughput, access delay, and spectrum opportunities in both the saturated and non-saturated networks. Fifth, we develop a simulation model for the DDH-MAC protocol using OPNET Modeler and investigate its performance for queuing delays, bit error rates, backoff slots and throughput. It could be observed from both the numerical and simulation results that when compared with existing CR MAC protocols our proposed MAC protocol can significantly improve the spectrum utilization efficiency of wireless networks. Finally, we optimize the performance of our proposed MAC protocol by incorporating multi-level security and making it energy efficient

    Advanced Technologies Enabling Unlicensed Spectrum Utilization in Cellular Networks

    Get PDF
    As the rapid progress and pleasant experience of Internet-based services, there is an increasing demand for high data rate in wireless communications systems. Unlicensed spectrum utilization in Long Term Evolution (LTE) networks is a promising technique to meet the massive traffic demand. There are two effective methods to use unlicensed bands for delivering LTE traffic. One is offloading LTE traffic toWi-Fi. An alternative method is LTE-unlicensed (LTE-U), which aims to directly use LTE protocols and infrastructures over the unlicensed spectrum. It has also been pointed out that addressing the above two methods simultaneously could further improve the system performance. However, how to avoid severe performance degradation of the Wi-Fi network is a challenging issue of utilizing unlicensed spectrum in LTE networks. Specifically, first, the inter-system spectrum sharing, or, more specifically, the coexistence of LTE andWi-Fi in the same unlicensed spectrum is the major challenge of implementing LTE-U. Second, to use the LTE and Wi-Fi integration approach, mobile operators have to manage two disparate networks in licensed and unlicensed spectrum. Third, optimization for joint data offloading to Wi-Fi and LTE-U in multi- cell scenarios poses more challenges because inter-cell interference must be addressed. This thesis focuses on solving problems related to these challenges. First, the effect of bursty traffic in an LTE and Wi-Fi aggregation (LWA)-enabled network has been investigated. To enhance resource efficiency, the Wi-Fi access point (AP) is designed to operate in both the native mode and the LWA mode simultaneously. Specifically, the LWA-modeWi-Fi AP cooperates with the LTE base station (BS) to transmit bearers to the LWA user, which aggregates packets from both LTE and Wi-Fi. The native-mode Wi-Fi AP transmits Wi-Fi packets to those native Wi-Fi users that are not with LWA capability. This thesis proposes a priority-based Wi-Fi transmission scheme with congestion control and studied the throughput of the native Wi-Fi network, as well as the LWA user delay when the native Wi-Fi user is under heavy traffic conditions. The results provide fundamental insights in the throughput and delay behavior of the considered network. Second, the above work has been extended to larger topologies. A stochastic geometry model has been used to model and analyze the performance of an MPTCP Proxy-based LWA network with intra-tier and cross-tier dependence. Under the considered network model and the activation conditions of LWA-mode Wi-Fi, this thesis has obtained three approximations for the density of active LWA-mode Wi-Fi APs through different approaches. Tractable analysis is provided for the downlink (DL) performance evaluation of large-scale LWA networks. The impact of different parameters on the network performance have been analyzed, validating the significant gain of using LWA in terms of boosted data rate and improved spectrum reuse. Third, this thesis also takes a significant step of analyzing joint multi-cell LTE-U and Wi-Fi network, while taking into account different LTE-U and Wi-Fi inter-working schemes. In particular, two technologies enabling data offloading from LTE to Wi-Fi are considered, including LWA and Wi-Fi offloading in the context of the power gain-based user offloading scheme. The LTE cells in this work are subject to load-coupling due to inter-cell interference. New system frameworks for maximizing the demand scaling factor for all users in both Wi-Fi and multi-cell LTE networks have been proposed. The potential of networks is explored in achieving optimal capacity with arbitrary topologies, accounting for both resource limits and inter-cell interference. Theoretical analyses have been proposed for the proposed optimization problems, resulting in algorithms that achieve global optimality. Numerical results show the algorithmsโ€™ effectiveness and benefits of joint use of data offloading and the direct use of LTE over the unlicensed band. All the derived results in this thesis have been validated by Monte Carlo simulations in Matlab, and the conclusions observed from the results can provide guidelines for the future unlicensed spectrum utilization in LTE networks
    • โ€ฆ
    corecore