3,530 research outputs found

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    Electromagnetic emission-aware schedulers for the uplink of OFDM wireless communication systems

    Get PDF
    The popularity and convergence of wireless communications have resulted in continuous network upgrades in order to support the increasing demand for bandwidth. However, given that wireless communication systems operate on radiofrequency waves, the health effects of electromagnetic emission from these systems are increasingly becoming a concern due to the ubiquity of mobile communication devices. In order to address these concerns, we propose two schemes (offline and online) for minimizing the EM emission of users in the uplink of OFDM systems, while maintaining an acceptable quality of service. We formulate our offline EM reduction scheme as a convex optimization problem and solve it through water-filling. This is based on the assumption that the long-term channel state information of all the users is known. Given that, in practice, long-term channel state information of all the users cannot always be available, we propose our online EM emission reduction scheme, which is based on minimizing the instantaneous transmit energy per bit of each user. Simulation results show that both our proposed schemes significantly minimize the EM emission when compared to the benchmark classic greedy spectral efficiency based scheme and an energy efficiency based scheme. Furthermore, our offline scheme proves to be very robust against channel prediction errors
    • …
    corecore