1,432 research outputs found

    Energy-Efficient Resource Allocation in Multiuser OFDM Systems with Wireless Information and Power Transfer

    Full text link
    In this paper, we study the resource allocation algorithm design for multiuser orthogonal frequency division multiplexing (OFDM) downlink systems with simultaneous wireless information and power transfer. The algorithm design is formulated as a non-convex optimization problem for maximizing the energy efficiency of data transmission (bit/Joule delivered to the users). In particular, the problem formulation takes into account the minimum required system data rate, heterogeneous minimum required power transfers to the users, and the circuit power consumption. Subsequently, by exploiting the method of time-sharing and the properties of nonlinear fractional programming, the considered non-convex optimization problem is solved using an efficient iterative resource allocation algorithm. For each iteration, the optimal power allocation and user selection solution are derived based on Lagrange dual decomposition. Simulation results illustrate that the proposed iterative resource allocation algorithm achieves the maximum energy efficiency of the system and reveal how energy efficiency, system capacity, and wireless power transfer benefit from the presence of multiple users in the system.Comment: 6 pages. The paper has been accepted for publication at the IEEE Wireless Communications and Networking Conference (WCNC) 2013, Shanghai, China, Apr. 201

    Secrecy Wireless Information and Power Transfer in OFDMA Systems

    Full text link
    In this paper, we consider simultaneous wireless information and power transfer (SWIPT) in orthogonal frequency division multiple access (OFDMA) systems with the coexistence of information receivers (IRs) and energy receivers (ERs). The IRs are served with best-effort secrecy data and the ERs harvest energy with minimum required harvested power. To enhance physical-layer security and yet satisfy energy harvesting requirements, we introduce a new frequency-domain artificial noise based approach. We study the optimal resource allocation for the weighted sum secrecy rate maximization via transmit power and subcarrier allocation. The considered problem is non-convex, while we propose an efficient algorithm for solving it based on Lagrange duality method. Simulation results illustrate the effectiveness of the proposed algorithm as compared against other heuristic schemes.Comment: To appear in Globecom 201
    • …
    corecore