18,422 research outputs found

    A New Cell Association Scheme In Heterogeneous Networks

    Full text link
    Cell association scheme determines which base station (BS) and mobile user (MU) should be associated with and also plays a significant role in determining the average data rate a MU can achieve in heterogeneous networks. However, the explosion of digital devices and the scarcity of spectra collectively force us to carefully re-design cell association scheme which was kind of taken for granted before. To address this, we develop a new cell association scheme in heterogeneous networks based on joint consideration of the signal-to-interference-plus-noise ratio (SINR) which a MU experiences and the traffic load of candidate BSs1. MUs and BSs in each tier are modeled as several independent Poisson point processes (PPPs) and all channels experience independently and identically distributed ( i.i.d.) Rayleigh fading. Data rate ratio and traffic load ratio distributions are derived to obtain the tier association probability and the average ergodic MU data rate. Through numerical results, We find that our proposed cell association scheme outperforms cell range expansion (CRE) association scheme. Moreover, results indicate that allocating small sized and high-density BSs will improve spectral efficiency if using our proposed cell association scheme in heterogeneous networks.Comment: Accepted by IEEE ICC 2015 - Next Generation Networking Symposiu

    User Transmit Power Minimization through Uplink Resource Allocation and User Association in HetNets

    Full text link
    The popularity of cellular internet of things (IoT) is increasing day by day and billions of IoT devices will be connected to the internet. Many of these devices have limited battery life with constraints on transmit power. High user power consumption in cellular networks restricts the deployment of many IoT devices in 5G. To enable the inclusion of these devices, 5G should be supplemented with strategies and schemes to reduce user power consumption. Therefore, we present a novel joint uplink user association and resource allocation scheme for minimizing user transmit power while meeting the quality of service. We analyze our scheme for two-tier heterogeneous network (HetNet) and show an average transmit power of -2.8 dBm and 8.2 dBm for our algorithms compared to 20 dBm in state-of-the-art Max reference signal received power (RSRP) and channel individual offset (CIO) based association schemes

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table
    • …
    corecore