75,992 research outputs found

    Efficient Cooperative Anycasting for AMI Mesh Networks

    Full text link
    We have, in recent years, witnessed an increased interest towards enabling a Smart Grid which will be a corner stone to build sustainable energy efficient communities. An integral part of the future Smart Grid will be the communications infrastructure which will make real time control of the grid components possible. Automated Metering Infrastructure (AMI) is thought to be a key enabler for monitoring and controlling the customer loads. %RPL is a connectivity enabling mechanism for low power and lossy networks currently being standardized by the IETF ROLL working group. RPL is deemed to be a suitable candidate for AMI networks where the meters are connected to a concentrator over multi hop low power and lossy links. This paper proposes an efficient cooperative anycasting approach for wireless mesh networks with the aim of achieving reduced traffic and increased utilisation of the network resources. The proposed cooperative anycasting has been realised as an enhancement on top of the Routing Protocol for Low Power and Lossy Networks (RPL), a connectivity enabling mechanism in wireless AMI mesh networks. In this protocol, smart meter nodes utilise an anycasting approach to facilitate efficient transport of metering data to the concentrator node. Moreover, it takes advantage of a distributed approach ensuring scalability

    A Secure and Low-Energy Zone-based Wireless Sensor Networks Routing Protocol for Pollution Monitoring

    Full text link
    [EN] Sensor networks can be used in many sorts of environments. The increase of pollution and carbon footprint are nowadays an important environmental problem. The use of sensors and sensor networks can help to make an early detection in order to mitigate their effect over the medium. The deployment of wireless sensor networks (WSNs) requires high-energy efficiency and secures mechanisms to ensure the data veracity. Moreover, when WSNs are deployed in harsh environments, it is very difficult to recharge or replace the sensor's batteries. For this reason, the increase of network lifetime is highly desired. WSNs also work in unattended environments, which is vulnerable to different sort of attacks. Therefore, both energy efficiency and security must be considered in the development of routing protocols for WSNs. In this paper, we present a novel Secure and Low-energy Zone-based Routing Protocol (SeLeZoR) where the nodes of the WSN are split into zones and each zone is separated into clusters. Each cluster is controlled by a cluster head. Firstly, the information is securely sent to the zone-head using a secret key; then, the zone-head sends the data to the base station using the secure and energy efficient mechanism. This paper demonstrates that SeLeZoR achieves better energy efficiency and security levels than existing routing protocols for WSNs.Mehmood, A.; Lloret, J.; Sendra, S. (2016). A Secure and Low-Energy Zone-based Wireless Sensor Networks Routing Protocol for Pollution Monitoring. Wireless Communications and Mobile Computing. 16(17):2869-2883. https://doi.org/10.1002/wcm.2734S286928831617Sendra S Deployment of efficient wireless sensor nodes for monitoring in rural, indoor and underwater environments 2013Javaid, N., Qureshi, T. N., Khan, A. H., Iqbal, A., Akhtar, E., & Ishfaq, M. (2013). EDDEEC: Enhanced Developed Distributed Energy-efficient Clustering for Heterogeneous Wireless Sensor Networks. Procedia Computer Science, 19, 914-919. doi:10.1016/j.procs.2013.06.125Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems, 52(4), 2489-2502. doi:10.1007/s11235-011-9568-3Garcia, M., Lloret, J., Sendra, S., & Rodrigues, J. J. P. C. (2011). Taking Cooperative Decisions in Group-Based Wireless Sensor Networks. Cooperative Design, Visualization, and Engineering, 61-65. doi:10.1007/978-3-642-23734-8_9Garcia, M., & Lloret, J. (2009). A Cooperative Group-Based Sensor Network for Environmental Monitoring. Cooperative Design, Visualization, and Engineering, 276-279. doi:10.1007/978-3-642-04265-2_41Jain T Wireless environmental monitoring system (wems) using data aggregation in a bidirectional hybrid protocol In Proc of the 6th International Conference ICISTM 2012 2012Senouci, M. R., Mellouk, A., Senouci, H., & Aissani, A. (2012). Performance evaluation of network lifetime spatial-temporal distribution for WSN routing protocols. Journal of Network and Computer Applications, 35(4), 1317-1328. doi:10.1016/j.jnca.2012.01.016Heinzelman WR Chandrakasan A Balakrishnan H Energy-efficient communication protocol for wireless microsensor networks In proc of the 33rd Annual Hawaii International Conference on System Sciences 2000 2000Xiangning F Yulin S Improvement on LEACH protocol of wireless sensor network In proc of the 2007 International Conference on Sensor Technologies and Applications SensorComm 2007 2007Tong M Tang M LEACH-B: an improved LEACH protocol for wireless sensor network In proc of the 6th International Conference on Wireless Communications Networking and Mobile Computing WiCOM 2010 2010Mohammad El-Basioni, B. M., Abd El-kader, S. M., Eissa, H. S., & Zahra, M. M. (2011). An Optimized Energy-aware Routing Protocol for Wireless Sensor Network. Egyptian Informatics Journal, 12(2), 61-72. doi:10.1016/j.eij.2011.03.001Younis O Fahmy S Distributed clustering in ad-hoc sensor networks: a hybrid, energy-efficient approach In proc of the Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies INFOCOM 2004 2004Noack, A., & Spitz, S. (2009). Dynamic Threshold Cryptosystem without Group Manager. Network Protocols and Algorithms, 1(1). doi:10.5296/npa.v1i1.161Nasser, N., & Chen, Y. (2007). SEEM: Secure and energy-efficient multipath routing protocol for wireless sensor networks. Computer Communications, 30(11-12), 2401-2412. doi:10.1016/j.comcom.2007.04.014Alippi, C., Camplani, R., Galperti, C., & Roveri, M. (2011). A Robust, Adaptive, Solar-Powered WSN Framework for Aquatic Environmental Monitoring. IEEE Sensors Journal, 11(1), 45-55. doi:10.1109/jsen.2010.2051539Parra L Sendra S Jimenez JM Lloret J Smart system to detect and track pollution in marine environments, in proc. of the 2015 2015 1503 1508Atto, M., & Guy, C. (2014). Routing Protocols and Quality of Services for Security Based Applications Using Wireless Video Sensor Networks. Network Protocols and Algorithms, 6(3), 119. doi:10.5296/npa.v6i3.5802Liu, Z., Zheng, Q., Xue, L., & Guan, X. (2012). A distributed energy-efficient clustering algorithm with improved coverage in wireless sensor networks. Future Generation Computer Systems, 28(5), 780-790. doi:10.1016/j.future.2011.04.019Bri D Sendra S Coll H Lloret J How the atmospheric variables affect to the WLAN datalink layer parameters 2010Ganesh, S., & Amutha, R. (2013). Efficient and secure routing protocol for wireless sensor networks through SNR based dynamic clustering mechanisms. Journal of Communications and Networks, 15(4), 422-429. doi:10.1109/jcn.2013.000073Amjad M 2014 Energy efficient multi level and distance clustering mechanism for wireless sensor networksMeghanathan, N. (2015). A Generic Algorithm to Determine Maximum Bottleneck Node Weight-based Data Gathering Trees for Wireless Sensor Networks. Network Protocols and Algorithms, 7(3), 18. doi:10.5296/npa.v7i3.796

    Stochastic and balanced distributed energy-efficient clustering (SBDEEC) for heterogeneous wireless sensor networks

    Get PDF
    Typically, a wireless sensor network contains an important number of inexpensive power constrained sensors which collect data from the environment and transmit them towards the base station in a cooperative way. Saving energy and therefore, extending the wireless sensor networks lifetime, imposes a great challenge. Many new protocols are specifically designed for these raisons where energy awareness is an essential consideration. The clustering techniques are largely used for these purposes.In this paper, we present and evaluate a Stochastic and Balanced Developed Distributed Energy-Efficient Clustering (SBDEEC) scheme for heterogeneous wireless sensor networks. This protocol is based on dividing the network into dynamic clusters. The cluster’s nodes communicate with an elected node called cluster head, and then the cluster heads communicate the information to the base station. SBDEEC introduces a balanced and dynamic method where the cluster head election probability is more efficient. Moreover, it uses a stochastic scheme detection to extend the network lifetime. Simulation results show that our protocol performs better than the Stable Election Protocol (SEP) and than the Distributed Energy-Efficient Clustering (DEEC) in terms of network lifetime. In the proposed protocol the first node death occurs over 90% times longer than the first node death in DEEC protocol and by about 130% than SEP.Postprint (published version

    Improve Energy Efficiency In Cooperative Medium Access Control Protocol For Wireless Networks

    Get PDF
    Cooperative communication has drawn a substantial attention in recent years due to the efficient and optimal utilization of constraint resources in dynamic wireless networks at a reduced infrastructural deployment and cost. In the medium access control (MAC) layer perspective, two major problems are associated with cooperative networks. The ability of cooperative MAC (CMAC) protocols to achieve multi-objective target orientation limit their adaptation to the future generation of wireless networks, since most of the existing protocols focus only on a single target objective. Besides, the sustainability of energy-constrained wireless networks due to limited energy supply capacity hinders their performance to ensure stable and reliable communication. These aforementioned problems limit the adaptation of the existing protocols to fit into the future generation of wireless networks. To adequately address these problems, two distinct CMAC protocols are proposed in this thesis to cater for the unpredictable and dynamic nature of the wireless network. Firstly, a new network lifetime-aware CMAC protocol named LEA-CMAC is proposed for energy-constrained wireless ad-hoc networks. An optimization problem is formulated with an objective of extending the lifetime of the network. The solution to this non-linear problem is provided in terms of optimal transmit power at the source and relay terminals in symmetric and asymmetric transmit power policies. The solution provided by this protocol is limited in terms of energy efficiency and network lifetime since the network totally rely on the helper nodes limited-powered batteries for their transmissions. Secondly, a novel CMAC protocol with radio frequency (RF) energy harvesting (EH) capability named EH-CMAC is proposed in a reactive relaying energy-constrained wireless ad-hoc networks to address the limitation in the earlier proposed LEA-CMAC protocol. The protocol possesses the ability to ensure a sustainable and reliable wireless connectivity in a dynamic wireless environment through the selection of an appropriate transmission mode that best suits the instantaneous network requirement. The protocol comprises of two distinct energy-efficient techniques namely, the outage probability quality-of-service (QoS) requirement and the transmit power optimization techniques which are applied in both traditional and EH relaying schemes. These techniques are selected and adapted based on the instantaneous network information and target objectives. In addition, a distributed and adaptive relay selection backoff process is proposed in each case to satisfy the available network information and achieve a multi-objective target oriented protocol. Through extensive simulation and comparison with existing CMAC protocols, the results show that LEA-CMAC extend the network lifetime by 85.67% over an existing CMAC protocol, while EH-CMAC extends the network lifetime by 90.99% over a traditional CMAC protocol. Thus, both protocols achieve a multi-objective target orientation under general circumstances

    Optimal Cooperative MIMO Scheme in Wireless Sensor Networks

    Get PDF
    Cooperative Multiple-Input Multiple-Output (MIMO) has been proposed as a transmission strategy to combat the fading problem in Wireless Sensor Networks (WSNs) to reduce the retransmission probability and lower the transmission energy. Among the earliest work on cooperative MIMO in WSNs is the analysis of the Space-Time Block Coding (STBC) scheme to achieve lower Bit Error Rate (BER) and significant energy savings. The work is continued with the implementation of the Low-Energy Adaptive Clustering Hierarchy (LEACH) Medium Access Control (MAC) protocol for clustered-based architectures. The combination of STBC and the LEACH scheme resulted in a significant improvement in transmission energy efficiency compared to the Single-Input Single Output (SISO) scheme. Further study is conducted to compare the performance of STBC and various Spatial Multiplexing (SM) schemes such as Vertical Bell Labs Layered Space-Time (V-BLAST) and Diagonal BLAST. In this study, LEACH MAC was also utilized and lower transmission energy and latency were achieved against the SISO scheme. However, the centralized architecture leads to energy wastage and higher latency compared to a distributed architecture. On the other hand, the implementation of a distributed architecture needs to consider synchronisation issues. Thus a practical cooperative MIMO scheme for distributed asynchronous WSNs is needed. Moreover, a practical MAC that can suit cooperative transmission is required. A combination of a practical MAC protocol and an efficient MIMO scheme for asynchronous cooperative transmission leads to a more energy efficient and lower latency cooperative MIMO system. A combination of a MAC protocol and a cooperative SM scheme for cooperative MIMO transmission has been proposed in previous study where the combined scheme achieves significant energy efficiency and lower latency. Furthermore, a transmit Maximum Ratio Combiner (MRC) scheme is suggested to be more tolerant to the jitter difference than the Alamouti STC scheme in network with imperfect transmitting nodes synchronisation. In this chapter, we expand these studies to two other cooperative MIMO schemes, namely Beamforming (BF) and STBC for both network scenarios: perfect and imperfect transmitting nodes synchronisation. The optimal cooperative MIMO scheme combined with an appropriate MAC protocol should lead to the lowest energy consumption and lowest packet latency

    An Energy Efficient Sleep/Wake up Routing Protocol for Wireless Sensor Networks

    Get PDF
    In recent years, wireless sensor networks (WSNs) have a rapid development and they take a lot of research attention because of their wide-range applications. A WSN consists of a large number of distributed sensor nodes. These nodes are often deployed in remote or hostile areas to monitor physical or environmental conditions where they send this data to a main location. The most critical parameter in WSNs is network lifetime, so an efficient routing protocol is essential to reduce the energy consumption and to increase the network lifetime. This paper proposes an energy-efficient chain-based cooperative routing protocol based on node sleep/wake-up mechanism for WSNs. We compare this protocol with two efficient protocols; LEACH and CBCCP using MATLAB. Simulation results show that the proposed algorithm achieves better performance and conserves more energy than the other two protocols

    Enhancement of the duty cycle cooperative medium access control for wireless body area networks

    Get PDF
    This paper presents a novel energy-efficient and reliable connection to enhance the transmission of data over a shared medium for wireless body area networks (WBAN). We propose a novel protocol of two master nodes-based cooperative protocol. In the proposed protocol, two master nodes were considered, that is, the belt master node and the outer body master node. The master nodes work cooperatively to avoid the retransmission process by sensors due to fading and collision, reducing the bit error rate (BER), which results in a reduction of the duty cycle and average transmission power. In addition, we have also presented a mathematical model of the duty cycle with the proposed protocol for the WBAN. The results show that the proposed cooperative protocol reduced the BER by a factor of 4. The average transmission power is reduced by a factor of 0.21 and this shows the potential of the proposed technique to be used in future wearable wireless sensors and systems
    corecore