1,046 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Genetic algorithms with immigrants and memory schemes for dynamic shortest path routing problems in mobile ad hoc networks

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2010 IEEEIn recent years, the static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks, genetic algorithms (GAs), particle swarm optimization, etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile networks [mobile ad hoc networks (MANETs)], wireless sensor networks, etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, i.e., the network topology changes over time due to energy conservation or node mobility. Therefore, the SP routing problem in MANETs turns out to be a dynamic optimization problem. In this paper, we propose to use GAs with immigrants and memory schemes to solve the dynamic SP routing problem in MANETs. We consider MANETs as target systems because they represent new-generation wireless networks. The experimental results show that these immigrants and memory-based GAs can quickly adapt to environmental changes (i.e., the network topology changes) and produce high-quality solutions after each change.This work was supported by the Engineering and Physical Sciences Research Council of U.K. underGrant EP/E060722/

    Power and Time Slot Allocation in Cognitive Relay Networks Using Particle Swarm Optimization

    Get PDF
    The two main problems in cognitive radio networks are power and time slot allocation problems which require a precise analysis and guarantee the quality of service in both the primary and secondary users. In this paper, these two problems are considered and a method is proposed to solve the resulting optimization problem. Our proposed method provides an improved performance in solving the constrained nonlinear multiobject optimization for the power control and beamforming in order to reach the maximum capacity and proper adaption of time slots, and as a result a new scheme for joint power and time slot allocation in cognitive relay networks is proposed. We adopt space diversity access as the secondary users access scheme and divide the time between multiple secondary users according to their contribution to primary user's transmission. Helping primary users provides more opportunities for secondary users to access the channel since the primary users can release the channel sooner. In contrast, primary network leases portion of channel access time to the secondary users for their transmission using particle swarm optimization (PSO). Numerical studies show good performance of the proposed scheme with a dynamic cost function in a nonstationary environment
    corecore