426 research outputs found

    An Innovative RAN Architecture for Emerging Heterogeneous Networks: The Road to the 5G Era

    Full text link
    The global demand for mobile-broadband data services has experienced phenomenal growth over the last few years, driven by the rapid proliferation of smart devices such as smartphones and tablets. This growth is expected to continue unabated as mobile data traffic is predicted to grow anywhere from 20 to 50 times over the next 5 years. Exacerbating the problem is that such unprecedented surge in smartphones usage, which is characterized by frequent short on/off connections and mobility, generates heavy signaling traffic load in the network signaling storms . This consumes a disproportion amount of network resources, compromising network throughput and efficiency, and in extreme cases can cause the Third-Generation (3G) or 4G (long-term evolution (LTE) and LTE-Advanced (LTE-A)) cellular networks to crash. As the conventional approaches of improving the spectral efficiency and/or allocation additional spectrum are fast approaching their theoretical limits, there is a growing consensus that current 3G and 4G (LTE/LTE-A) cellular radio access technologies (RATs) won\u27t be able to meet the anticipated growth in mobile traffic demand. To address these challenges, the wireless industry and standardization bodies have initiated a roadmap for transition from 4G to 5G cellular technology with a key objective to increase capacity by 1000Ã? by 2020 . Even though the technology hasn\u27t been invented yet, the hype around 5G networks has begun to bubble. The emerging consensus is that 5G is not a single technology, but rather a synergistic collection of interworking technical innovations and solutions that collectively address the challenge of traffic growth. The core emerging ingredients that are widely considered the key enabling technologies to realize the envisioned 5G era, listed in the order of importance, are: 1) Heterogeneous networks (HetNets); 2) flexible backhauling; 3) efficient traffic offload techniques; and 4) Self Organizing Networks (SONs). The anticipated solutions delivered by efficient interworking/ integration of these enabling technologies are not simply about throwing more resources and /or spectrum at the challenge. The envisioned solution, however, requires radically different cellular RAN and mobile core architectures that efficiently and cost-effectively deploy and manage radio resources as well as offload mobile traffic from the overloaded core network. The main objective of this thesis is to address the key techno-economics challenges facing the transition from current Fourth-Generation (4G) cellular technology to the 5G era in the context of proposing a novel high-risk revolutionary direction to the design and implementation of the envisioned 5G cellular networks. The ultimate goal is to explore the potential and viability of cost-effectively implementing the 1000x capacity challenge while continuing to provide adequate mobile broadband experience to users. Specifically, this work proposes and devises a novel PON-based HetNet mobile backhaul RAN architecture that: 1) holistically addresses the key techno-economics hurdles facing the implementation of the envisioned 5G cellular technology, specifically, the backhauling and signaling challenges; and 2) enables, for the first time to the best of our knowledge, the support of efficient ground-breaking mobile data and signaling offload techniques, which significantly enhance the performance of both the HetNet-based RAN and LTE-A\u27s core network (Evolved Packet Core (EPC) per 3GPP standard), ensure that core network equipment is used more productively, and moderate the evolving 5G\u27s signaling growth and optimize its impact. To address the backhauling challenge, we propose a cost-effective fiber-based small cell backhaul infrastructure, which leverages existing fibered and powered facilities associated with a PON-based fiber-to-the-Node/Home (FTTN/FTTH)) residential access network. Due to the sharing of existing valuable fiber assets, the proposed PON-based backhaul architecture, in which the small cells are collocated with existing FTTN remote terminals (optical network units (ONUs)), is much more economical than conventional point-to-point (PTP) fiber backhaul designs. A fully distributed ring-based EPON architecture is utilized here as the fiber-based HetNet backhaul. The techno-economics merits of utilizing the proposed PON-based FTTx access HetNet RAN architecture versus that of traditional 4G LTE-A\u27s RAN will be thoroughly examined and quantified. Specifically, we quantify the techno-economics merits of the proposed PON-based HetNet backhaul by comparing its performance versus that of a conventional fiber-based PTP backhaul architecture as a benchmark. It is shown that the purposely selected ring-based PON architecture along with the supporting distributed control plane enable the proposed PON-based FTTx RAN architecture to support several key salient networking features that collectively significantly enhance the overall performance of both the HetNet-based RAN and 4G LTE-A\u27s core (EPC) compared to that of the typical fiber-based PTP backhaul architecture in terms of handoff capability, signaling overhead, overall network throughput and latency, and QoS support. It will also been shown that the proposed HetNet-based RAN architecture is not only capable of providing the typical macro-cell offloading gain (RAN gain) but also can provide ground-breaking EPC offloading gain. The simulation results indicate that the overall capacity of the proposed HetNet scales with the number of deployed small cells, thanks to LTE-A\u27s advanced interference management techniques. For example, if there are 10 deployed outdoor small cells for every macrocell in the network, then the overall capacity will be approximately 10-11x capacity gain over a macro-only network. To reach the 1000x capacity goal, numerous small cells including 3G, 4G, and WiFi (femtos, picos, metros, relays, remote radio heads, distributed antenna systems) need to be deployed indoors and outdoors, at all possible venues (residences and enterprises)

    Energy and cost management in shared heterogeneous network deployments

    Get PDF
    During the recent years, a huge augmentation of the data traffic volume has been noticed, while a further steep increase is expected in the following years. As a result, questions have been raised over the years about the energy consumption needs of the wireless telecommunication networks, their carbon dioxide emissions and their operational expenses. Aiming at meeting the high traffic demands with flat energy consumption and flat incurred expenses, mobile network operators (MNOs) have opted to improve their position (i) by deploying heterogeneous networks (HetNets), which are consisted of macrocell base stations (MBSs) and small cell base stations (SBSs) and (ii) by sharing their infrastructure. However, questions could be raised about the extend to which HetNet densification is of aid. Given that network planning is executed according to high traffic load volumes, BS underutilisation during low-traffic hours cannot be neglected. Similarly, the aggregated energy needs of multiple SBSs equals the ones of an energy hungry MBS, having thus a respectable share of the net energy consumption. In this context, a set of research opportunities have been identified. This thesis provides contribution toward the achievement of a greener and more cost efficient operation of HetNet deployments, where multiple stakeholders develop their activity and where energy support can have the form of various alternate schemes, including renewable energy (RE) sources. Depending on the network energy support, i.e., whether RE sources are used in the network or not, the main body of this thesis is divided in two research directions. The first part of the thesis uses the technology of switching off strategies in order to explore their efficiency in terms of both energy and costs in a HetNet. The HetNet is assumed to be a roaming-based cooperative activity of multiple MNOs that is powered exclusively by grid energy. A switching off and a cost allocation scheme are proposed, using as criteria the BS type, the BS load and the roaming cost for traffic offloading. The performance of the proposed schemes is evaluated with respect to energy efficiency, cost savings and fairness, using computer-based simulations. The second part of the thesis explores energy and cost management issues in energy harvesting (EH) HetNet deployments where EH-BSs use an EH system (EHS), an energy storage system (ESS) and the smart grid (SG) as energy procurement sources. The EH-HetNet is assumed a two-tier network deployment of EH-MBSs that are passively shared among an MNO set and EH-SBSs that are provided to MNOs by an infrastructure provider. Taking into consideration the infrastructure location and the variety of stakeholders involved in the network deployment, approaches of RE exchange (REE) are proposed as a cooperative RE sharing for the shared EH-MBSs, based on bankruptcy theory, and a non-cooperative, aggregator-assisted RE trading, based on double auctions, for the EH-SBSs. The performance of the proposed schemes is evaluated in terms of the hours of independence of the studied system from the SG, the fairness regulated by the provided solution and the economical payoffs extracted for the stakeholdersDurante los últimos años, se ha notado un aumento enorme del volumen de tráfico de datos, mientras que se espera un nuevo aumento en los próximos años. Como resultado, se han planteado preguntas sobre las necesidades de consumo de energía de las redes inalámbricas de telecomunicaciones, sus emisiones de dióxido de carbono y sus gastos operativos. Con el objetivo de satisfacer las altas demandas de tráfico con consumo de energía constante y con gastos incurridos constantes, además de utilizar soluciones basadas en la nube, los operadores de redes móviles (MNOs) han optado por mejorar su posición (i) desplegando redes heterogéneas (HetNets), que consisten en estaciones base de macro-células (MBSs) y estaciones base de células pequeñas (SBSs), y (ii) compartiendo su infraestructura. Sin embargo, podrían plantearse preguntas sobre hasta qué punto la densificación de una HetNet es de ayuda. Dado que la planificación de la red se ejecuta de acuerdo con los volúmenes de carga de tráfico más elevados, no se puede descuidar la subutilización de las estaciones base (BS) durante las horas de poco tráfico. De manera similar, las necesidades de energía agregadas de múltiples SBSs son iguales a las de una MBS que consume mucha energía, teniendo así una parte respetable del consumo neto de energía. En este contexto, se ha identificado un conjunto de oportunidades de investigación. Esta tesis contribuye al logro de una operación más ecológica y rentable de las implementaciones de HetNet, donde múltiples partes interesadas desarrollan su actividad y donde el apoyo energético puede tener la forma de varios esquemas alternativos, incluidas las fuentes de energía renovables (RE). Dependiendo del soporte de energía de red, es decir, si las fuentes de RE se usan en la red o no, el cuerpo principal de esta tesis se divide en dos direcciones de investigación. La primera parte de la tesis utiliza la tecnología de las estrategias de apagado con el objetivo de explorar su eficiencia en términos de energía y gastos en una HetNet. Se asume que la HetNet es una actividad cooperativa basada en la itinerancia de múltiples MNO que se alimenta exclusivamente de energía de la red. Se propone un esquema de desconexión y de asignación de costes, que utiliza como criterios el tipo de BS, la carga de BS y el coste de la itinerancia para la descarga de tráfico. El rendimiento de los esquemas propuestos se evalúa con respecto a la eficiencia energética, el ahorro de costes y la equidad, usando simulaciones en computadora. La segunda parte de la tesis explora los problemas de gestión de energía y de costes en las implementaciones de HetNet donde las estaciones base recolectan energía usando un sistema EH (EHS), un sistema de almacenamiento de energía (ESS) y la red eléctrica inteligente (SG) como sistemas de adquisición de energía. Se asume que el EH-HetNet es una implementación de redes de dos niveles donde los EH-MBSs se comparten pasivamente entre un conjunto de MNOs y EH-SBSs se proporcionan a los MNOs de un proveedor de infraestructura. Teniendo en cuenta la ubicación de la infraestructura y la variedad de partes interesadas e involucradas en el despliegue de la red, se proponen enfoques de intercambio de RE (REE) como un intercambio cooperativo de RE para los EH-MBS compartidos, basado en la teoría de bancarrota, y un no cooperativo comercio de RE para los EH-SBSs, que es asistido por un agregador y basado en las subastas dobles. El rendimiento de los esquemas propuestos se evalúa en términos de las horas de independencia del sistema estudiado con respecto al SG, la imparcialidad regulada por la solución proporcionada y los beneficios económicos extraídos para las interesadas

    Energy and cost management in shared heterogeneous network deployments

    Get PDF
    Pla de Doctorat industrial de la Generalitat de CatalunyaDuring the recent years, a huge augmentation of the data traffic volume has been noticed, while a further steep increase is expected in the following years. As a result, questions have been raised over the years about the energy consumption needs of the wireless telecommunication networks, their carbon dioxide emissions and their operational expenses. Aiming at meeting the high traffic demands with flat energy consumption and flat incurred expenses, mobile network operators (MNOs) have opted to improve their position (i) by deploying heterogeneous networks (HetNets), which are consisted of macrocell base stations (MBSs) and small cell base stations (SBSs) and (ii) by sharing their infrastructure. However, questions could be raised about the extend to which HetNet densification is of aid. Given that network planning is executed according to high traffic load volumes, BS underutilisation during low-traffic hours cannot be neglected. Similarly, the aggregated energy needs of multiple SBSs equals the ones of an energy hungry MBS, having thus a respectable share of the net energy consumption. In this context, a set of research opportunities have been identified. This thesis provides contribution toward the achievement of a greener and more cost efficient operation of HetNet deployments, where multiple stakeholders develop their activity and where energy support can have the form of various alternate schemes, including renewable energy (RE) sources. Depending on the network energy support, i.e., whether RE sources are used in the network or not, the main body of this thesis is divided in two research directions. The first part of the thesis uses the technology of switching off strategies in order to explore their efficiency in terms of both energy and costs in a HetNet. The HetNet is assumed to be a roaming-based cooperative activity of multiple MNOs that is powered exclusively by grid energy. A switching off and a cost allocation scheme are proposed, using as criteria the BS type, the BS load and the roaming cost for traffic offloading. The performance of the proposed schemes is evaluated with respect to energy efficiency, cost savings and fairness, using computer-based simulations. The second part of the thesis explores energy and cost management issues in energy harvesting (EH) HetNet deployments where EH-BSs use an EH system (EHS), an energy storage system (ESS) and the smart grid (SG) as energy procurement sources. The EH-HetNet is assumed a two-tier network deployment of EH-MBSs that are passively shared among an MNO set and EH-SBSs that are provided to MNOs by an infrastructure provider. Taking into consideration the infrastructure location and the variety of stakeholders involved in the network deployment, approaches of RE exchange (REE) are proposed as a cooperative RE sharing for the shared EH-MBSs, based on bankruptcy theory, and a non-cooperative, aggregator-assisted RE trading, based on double auctions, for the EH-SBSs. The performance of the proposed schemes is evaluated in terms of the hours of independence of the studied system from the SG, the fairness regulated by the provided solution and the economical payoffs extracted for the stakeholdersDurante los últimos años, se ha notado un aumento enorme del volumen de tráfico de datos, mientras que se espera un nuevo aumento en los próximos años. Como resultado, se han planteado preguntas sobre las necesidades de consumo de energía de las redes inalámbricas de telecomunicaciones, sus emisiones de dióxido de carbono y sus gastos operativos. Con el objetivo de satisfacer las altas demandas de tráfico con consumo de energía constante y con gastos incurridos constantes, además de utilizar soluciones basadas en la nube, los operadores de redes móviles (MNOs) han optado por mejorar su posición (i) desplegando redes heterogéneas (HetNets), que consisten en estaciones base de macro-células (MBSs) y estaciones base de células pequeñas (SBSs), y (ii) compartiendo su infraestructura. Sin embargo, podrían plantearse preguntas sobre hasta qué punto la densificación de una HetNet es de ayuda. Dado que la planificación de la red se ejecuta de acuerdo con los volúmenes de carga de tráfico más elevados, no se puede descuidar la subutilización de las estaciones base (BS) durante las horas de poco tráfico. De manera similar, las necesidades de energía agregadas de múltiples SBSs son iguales a las de una MBS que consume mucha energía, teniendo así una parte respetable del consumo neto de energía. En este contexto, se ha identificado un conjunto de oportunidades de investigación. Esta tesis contribuye al logro de una operación más ecológica y rentable de las implementaciones de HetNet, donde múltiples partes interesadas desarrollan su actividad y donde el apoyo energético puede tener la forma de varios esquemas alternativos, incluidas las fuentes de energía renovables (RE). Dependiendo del soporte de energía de red, es decir, si las fuentes de RE se usan en la red o no, el cuerpo principal de esta tesis se divide en dos direcciones de investigación. La primera parte de la tesis utiliza la tecnología de las estrategias de apagado con el objetivo de explorar su eficiencia en términos de energía y gastos en una HetNet. Se asume que la HetNet es una actividad cooperativa basada en la itinerancia de múltiples MNO que se alimenta exclusivamente de energía de la red. Se propone un esquema de desconexión y de asignación de costes, que utiliza como criterios el tipo de BS, la carga de BS y el coste de la itinerancia para la descarga de tráfico. El rendimiento de los esquemas propuestos se evalúa con respecto a la eficiencia energética, el ahorro de costes y la equidad, usando simulaciones en computadora. La segunda parte de la tesis explora los problemas de gestión de energía y de costes en las implementaciones de HetNet donde las estaciones base recolectan energía usando un sistema EH (EHS), un sistema de almacenamiento de energía (ESS) y la red eléctrica inteligente (SG) como sistemas de adquisición de energía. Se asume que el EH-HetNet es una implementación de redes de dos niveles donde los EH-MBSs se comparten pasivamente entre un conjunto de MNOs y EH-SBSs se proporcionan a los MNOs de un proveedor de infraestructura. Teniendo en cuenta la ubicación de la infraestructura y la variedad de partes interesadas e involucradas en el despliegue de la red, se proponen enfoques de intercambio de RE (REE) como un intercambio cooperativo de RE para los EH-MBS compartidos, basado en la teoría de bancarrota, y un no cooperativo comercio de RE para los EH-SBSs, que es asistido por un agregador y basado en las subastas dobles. El rendimiento de los esquemas propuestos se evalúa en términos de las horas de independencia del sistema estudiado con respecto al SG, la imparcialidad regulada por la solución proporcionada y los beneficios económicos extraídos para las interesadas.Postprint (published version

    Optimizations in Heterogeneous Mobile Networks

    Get PDF

    A Comprehensive Survey on Resource Allocation for CRAN in 5G and Beyond Networks

    Get PDF
    The diverse service requirements coming with the advent of sophisticated applications as well as a large number of connected devices demand for revolutionary changes in the traditional distributed radio access network (RAN). To this end, Cloud-RAN (CRAN) is considered as an important paradigm to enhance the performance of the upcoming fifth generation (5G) and beyond wireless networks in terms of capacity, latency, and connectivity to a large number of devices. Out of several potential enablers, efficient resource allocation can mitigate various challenges related to user assignment, power allocation, and spectrum management in a CRAN, and is the focus of this paper. Herein, we provide a comprehensive review of resource allocation schemes in a CRAN along with a detailed optimization taxonomy on various aspects of resource allocation. More importantly, we identity and discuss the key elements for efficient resource allocation and management in CRAN, namely: user assignment, remote radio heads (RRH) selection, throughput maximization, spectrum management, network utility, and power allocation. Furthermore, we present emerging use-cases including heterogeneous CRAN, millimeter-wave CRAN, virtualized CRAN, Non- Orthogonal Multiple Access (NoMA)-based CRAN and fullduplex enabled CRAN to illustrate how their performance can be enhanced by adopting CRAN technology. We then classify and discuss objectives and constraints involved in CRAN-based 5G and beyond networks. Moreover, a detailed taxonomy of optimization methods and solution approaches with different objectives is presented and discussed. Finally, we conclude the paper with several open research issues and future directions

    Network virtualization in next generation cellular networks

    Get PDF
    The complexity of operation and management of emerging cellular networks significantly increases, as they evolve to correspond to increasing QoS needs, data rates and diversity of offered services. Thus critical challenges appear regarding their performance. At the same time, network sustainability pushes toward the utilization of haring Radio Access Network (RAN) infrastructure between Mobile Network Operators (MNOs). This requires advanced network management techniques which have to be developed based on characteristics of these networks and traffic demands. Therefore it is necessary to provide solutions enabling the creation of logically isolated network partitions over shared physical network infrastructure. Multiple heterogeneous virtual networks should simultaneously coexist and support resource aggregation so as to appear as a single resource to serve different traffic types on demand. Hence in this thesis, we study RAN virtualization and slicing solutions destined to tackle these challenges. In the first part, we present our approach to map virtual network elements onto radio resources of the substrate physical network, in a dense multi-tier LTE-A scenario owned by a MNO. We propose a virtualization solution at BS level, where baseband modules of distributed BSs, interconnected via logical point-to-point X2 interface, cooperate to reallocate radio resources on a traffic need basis. Our proposal enhances system performance by achieving 53% throughput gain compared with benchmark schemes without substantial signaling overhead. In the second part of the thesis, we concentrate on facilitating resource provisioning between multiple Virtual MNOs (MVNOs), by integrating the capacity broker in the 3GPP network management architecture with minimum set of enhancements. A MNO owns the network and provides RAN access on demand to several MVNOs. Furthermore we propose an algorithm for on-demand resource allocation considering two types of traffic. Our proposal achieves 50% more admitted requests without Service Level Agreement (SLA) violation compared with benchmark schemes. In the third part, we devise and study a solution for BS agnostic network slicing leveraging BS virtualization in a multi-tenant scenario. This scenario is composed of different traffic types (e.g., tight latency requirements and high data rate demands) along with BSs characterized by different access and transport capabilities (i.e., Remote Radio Heads, RRHs, Small Cells, SCs and future 5G NodeBs, gNBs with various functional splits having ideal and non-ideal transport network). Our solution achieves 67% average spectrum usage gain and 16.6% Baseband Unit processing load reduction compared with baseline scenarios. Finally, we conclude the thesis by providing insightful research challenges for future works.La complejidad de la operación y la gestión de las emergentes redes celulares aumenta a medida que evolucionan para hacer frente a las crecientes necesidades de calidad de servicio (QoS), las tasas de datos y la diversidad de los servicios ofrecidos. De esta forma aparecen desafíos críticos con respecto a su rendimiento. Al mismo tiempo, la sostenibilidad de la red empuja hacia la utilización de la infraestructura de red de acceso radio (RAN) compartida entre operadores de redes móviles (MNO). Esto requiere técnicas avanzadas de gestión de redes que deben desarrollarse en función de las características especiales de estas redes y las demandas de tráfico. Por lo tanto, es necesario proporcionar soluciones que permitan la creación de particiones de red aisladas lógicamente sobre la infraestructura de red física compartida. Para ello, en esta tesis, estudiamos las soluciones de virtualización de la RAN destinadas a abordar estos desafíos. En la primera parte de la tesis, nos centramos en mapear elementos de red virtual en recursos de radio de la red física, en un escenario LTE-A de múltiples niveles que es propiedad de un solo MNO. Proponemos una solución de virtualización a nivel de estación base (BS), donde los módulos de banda base de BSs distribuidas, interconectadas a través de la interfaz lógica X2, cooperan para reasignar los recursos radio en función de las necesidades de tráfico. Nuestra propuesta mejora el rendimiento del sistema al obtener un rendimiento 53% en comparación con esquemas de referencia. En la segunda parte de la tesis, nos concentramos en facilitar el aprovisionamiento de recursos entre muchos operadores de redes virtuales móviles (MVNO), al integrar el capacity broker en la arquitectura de administración de red 3GPP con un conjunto míinimo de mejoras. En este escenario, un MNO es el propietario de la red y proporciona acceso bajo demanda (en inglés on-demand) a varios MVNOs. Además, para aprovechar al máximo las capacidades del capacity broker, proponemos un algoritmo para la asignación de recursos bajo demanda, considerando dos tipos de tráfico con distintas características. Nuestra propuesta alcanza 50% más de solicitudes admitidas sin violación del Acuerdo de Nivel de Servicio (SLA) en comparación con otros esquemas. En la tercera parte de la tesis, estudiamos una solución para el slicing de red independiente del tipo de BS, considerando la virtualización de BS en un escenario de múltiples MVNOs (multi-tenants). Este escenario se compone de diferentes tipos de tráfico (por ejemplo, usuarios con requisitos de latencia estrictos y usuarios con altas demandas de velocidad de datos) junto con BSs caracterizadas por diferentes capacidades de acceso y transporte (por ejemplo, Remote Radio Heads, RRHs, Small cells, SC y 5G NodeBs, gNBs con varias divisiones funcionales que tienen una red de transporte ideal y no ideal). Nuestra solución logra una ganancia promedio de uso de espectro de 67% y una reducción de la carga de procesamiento de la banda base de 16.6% en comparación con escenarios de referencia. Finalmente, concluimos la tesis al proporcionando los desafíos y retos de investigación para trabajos futuros.Postprint (published version

    Optimisation of Traffic Steering for Heterogeneous Mobile Networks

    Get PDF
    Mobile networks have changed from circuit switched to IP-based mobile wireless packet switched networks. This paradigm shift led to new possibilities and challenges. The development of new capabilities based on IP-based networks is ongoing and raises new problems that have to be tackled, for example, the heterogeneity of current radio access networks and the wide range of data rates, coupled with user requirements and behaviour. A typical example of this shift is the nature of traffic, which is currently mostly data-based; further, forecasts based on market and usage trends indicate a data traffic increase of nearly 11 times between 2013 and 2018. The majority of this data traffic is predicted to be multimedia traffic, such as video streaming and live video streaming combined with voice traffic, all prone to delay, jitter, and packet loss and demanding high data rates and a high Quality of Service (QoS) to enable the provision of valuable service to the end-user. While the demands on the network are increasing, the end-user devices become more mobile and end-user demand for the capability of being always on, anytime and anywhere. The combination of end-user devices mobility, the required services, and the significant traffic loads generated by all the end-users leads to a pressing demand for adequate measures to enable the fulfilment of these requirements. The aim of this research is to propose an architecture which provides smart, intelligent and per end-user device individualised traffic steering for heterogeneous mobile networks to cope with the traffic volume and to fulfil the new requirements on QoS, mobility, and real-time capabilities. The proposed architecture provides traffic steering mechanisms based on individual context data per end-user device enabling the generation of individual commands and recommendations. In order to provide valuable services for the end-user, the commands and recommendations are distributed to the end-user devices in real-time. The proposed architecture does not require any proprietary protocols to facilitate its integration into the existing network infrastructure of a mobile network operator. The proposed architecture has been evaluated through a number of use cases. A proof-of-concept of the proposed architecture, including its core functionality, was implemented using the ns-3 network simulator. The simulation results have shown that the proposed architecture achieves improvements for traffic steering including traffic offload and handover. Further use cases have demonstrated that it is possible to achieve benefits in multiple other areas, such as for example improving the energy efficiency, improving frequency interference management, and providing additional or more accurate data to 3rd party to improve their services
    corecore