178 research outputs found

    A Review on Proposed Implementation of VGDRA and its Comparative Analysis.

    Get PDF
    Recently, a virtual Grid-based dynamic routes adjustment scheme for mobile sink-based wireless sensor networks is introduced. This paper presents the proposed implementation of VGDRA and its comparative analysis, in which we are discussing the approach of efficient data delivery using communication of distance priority i.e. avoiding straight line communication which was used in previous VGDRA scheme. While maintaining nearly optimal routes to mobile sink’s latest location, our scheme aims to minimize the routes reconstruction cost of sensor nodes. In this approach energy model for reducing energy consumption of nodes is used, which will improves lifetime and also reduce cost consumption. DOI: 10.17762/ijritcc2321-8169.150614

    Enhanced VGDRA for Dynamic WSN

    Get PDF
    Sensor Nodes are fundamental blocks of Wireless Sensor Networks. The focus of researchers is still on reducing the energy dissipation by the sensor nodes over time. Sensor nodes once deployed have a fixed amount of energy available to them. In order to use the energy efficiently the sensor nodes are grouped together based on the tasks performed by them. These groups of sensor nodes are known as clusters. Each cluster is headed by a cluster head connecting the cluster with the base station. Energy consumption is directly proportional to the distance from the base station. The concept of network lifetime is closely related to the energy consumption and area coverage in wireless sensor network. The main aim of the proposed technique is to select cluster heads in such a way that they extend the network lifetime and increase throughput of the network. The efficiency of the proposed cluster head selection technique is that it covers energy consumption and routes selection for data delivery from sensor node to the base station. In this paper an Enhanced Virtual Grid-based Dynamic Routes Adjustment Scheme is proposed presenting a set of rules for the selection of cluster heads in such a way that the energy consumption by the cluster heads is balanced throughout the network and it does not get over exploited

    VGDRA: A Virtual Grid-Based Dynamic Routes Adjustment Scheme for Mobile Sink-Based Wireless Sensor Networks

    Get PDF
    In wireless sensor networks, exploiting the sink mobility has been considered as a good strategy to balance the nodes energy dissipation. Despite its numerous advantages, the data dissemination to the mobile sink is a challenging task for the resource constrained sensor nodes due to the dynamic network topology caused by the sink mobility. For efficient data delivery, nodes need to reconstruct their routes toward the latest location of the mobile sink, which undermines the energy conservation goal. In this paper, we present a virtual gridbased dynamic routes adjustment (VGDRA) scheme that aims to minimize the routes reconstruction cost of the sensor nodes while maintaining nearly optimal routes to the latest location of the mobile sink. We propose a set of communication rules that governs the routes reconstruction process thereby requiring only a limited number of nodes to readjust their data delivery routes toward the mobile sink. Simulation results demonstrate reduced routes reconstruction cost and improved network lifetime of the VGDRA scheme when compared with existing work

    A Theoretical Review of Topological Organization for Wireless Sensor Network

    Get PDF
    The recent decades have seen the growth in the fields of wireless communication technologies, which has made it possible to produce components with a rational cost of a few cubic millimeters of volume, called sensors. The collaboration of many of these wireless sensors with a basic base station gives birth to a network of wireless sensors. The latter faces numerous problems related to application requirements and the inadequate abilities of sensor nodes, particularly in terms of energy. In order to integrate the different models describing the characteristics of the nodes of a WSN, this paper presents the topological organization strategies to structure its communication. For large networks, partitioning into sub-networks (clusters) is a technique used to reduce consumption, improve network stability and facilitate scalability

    Improvised Greedy Algorithm of Sensors Scheduling for Target Coverage in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) have many fields of application, including industrial, environmental, military, health and home domains. Monitoring a given zone is one of the main goals of this technology. This consists in deploying sensor nodes in order to detect any event occurring in the zone of interest considered and report this event to the sink. The monitoring task can vary depending on the application domain concerned. In the industrial domain, the fast and easy deployment of wireless sensor nodes allows a better monitoring of the area of interest in temporary work sites. This deployment must be able to cope with obstacles and be energy efficient in order to maximize the network lifetime. If the deployment is made after a disaster, it will operate in an unfriendly environment that is discovered dynamically. The lifetime maximization in sensors network with target coverage can be explained by these statements: How to find the maximum number of sets from all sensors such that each set can cover all the target at any particular instant of time, and then schedule those sets to be active and sleep, so that this arrangement can maximize the lifetime of the network. In this research we have discussed a greedy algorithm that produce maximum number of disjoint sets of the sensors, such that each sensor set is a set-cover

    On the design of smart parking networks in the smart cities: an optimal sensor placement model

    Get PDF
    Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called ''anchor'' nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and e ciency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering e ciency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative e ciency of the single-step compared to the two-step model on di erent performance parameters. These results are consolidated by simulation results, which reveal that our solution outperforms a random placement in terms of both energy consumption, delay and throughput achieved by a smart parking network

    Survey of Deployment Algorithms in Wireless Sensor Networks: Coverage and Connectivity Issues and Challenges

    Get PDF
    International audienceWireless Sensor Networks (WSNs) have many fields of application, including industrial, environmental, military, health and home domains. Monitoring a given zone is one of the main goals of this technology. This consists in deploying sensor nodes in order to detect any event occurring in the zone of interest considered and report this event to the sink. The monitoring task can vary depending on the application domain concerned. In the industrial domain, the fast and easy deployment of wireless sensor nodes allows a better monitoring of the area of interest in temporary worksites. This deployment must be able to cope with obstacles and be energy efficient in order to maximize the network lifetime. If the deployment is made after a disaster, it will operate in an unfriendly environment that is discovered dynamically. We present a survey that focuses on two major issues in WSNs: coverage and connectivity. We motivate our study by giving different use cases corresponding to different coverage, connectivity, latency and robustness requirements of the applications considered. We present a general and detailed analysis of deployment problems, while highlighting the impacting factors, the common assumptions and models adopted in the literature, as well as performance criteria for evaluation purposes. Different deployment algorithms for area, barrier, and points of interest are studied and classified according to their characteristics and properties. Several recapitulative tables illustrate and summarize our study. The designer in charge of setting up such a network will find some useful recommendations, as well as some pitfalls to avoid. Before concluding, we look at current trends and discuss some open issues

    Unified Role Assignment Framework For Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are made possible by the continuing improvements in embedded sensor, VLSI, and wireless radio technologies. Currently, one of the important challenges in sensor networks is the design of a systematic network management framework that allows localized and collaborative resource control uniformly across all application services such as sensing, monitoring, tracking, data aggregation, and routing. The research in wireless sensor networks is currently oriented toward a cross-layer network abstraction that supports appropriate fine or course grained resource controls for energy efficiency. In that regard, we have designed a unified role-based service paradigm for wireless sensor networks. We pursue this by first developing a Role-based Hierarchical Self-Organization (RBSHO) protocol that organizes a connected dominating set (CDS) of nodes called dominators. This is done by hierarchically selecting nodes that possess cumulatively high energy, connectivity, and sensing capabilities in their local neighborhood. The RBHSO protocol then assigns specific tasks such as sensing, coordination, and routing to appropriate dominators that end up playing a certain role in the network. Roles, though abstract and implicit, expose role-specific resource controls by way of role assignment and scheduling. Based on this concept, we have designed a Unified Role-Assignment Framework (URAF) to model application services as roles played by local in-network sensor nodes with sensor capabilities used as rules for role identification. The URAF abstracts domain specific role attributes by three models: the role energy model, the role execution time model, and the role service utility model. The framework then generalizes resource management for services by providing abstractions for controlling the composition of a service in terms of roles, its assignment, reassignment, and scheduling. To the best of our knowledge, a generic role-based framework that provides a simple and unified network management solution for wireless sensor networks has not been proposed previously
    corecore