438 research outputs found

    A Review of Wireless Sensor Networks with Cognitive Radio Techniques and Applications

    Get PDF
    The advent of Wireless Sensor Networks (WSNs) has inspired various sciences and telecommunication with its applications, there is a growing demand for robust methodologies that can ensure extended lifetime. Sensor nodes are small equipment which may hold less electrical energy and preserve it until they reach the destination of the network. The main concern is supposed to carry out sensor routing process along with transferring information. Choosing the best route for transmission in a sensor node is necessary to reach the destination and conserve energy. Clustering in the network is considered to be an effective method for gathering of data and routing through the nodes in wireless sensor networks. The primary requirement is to extend network lifetime by minimizing the consumption of energy. Further integrating cognitive radio technique into sensor networks, that can make smart choices based on knowledge acquisition, reasoning, and information sharing may support the network's complete purposes amid the presence of several limitations and optimal targets. This examination focuses on routing and clustering using metaheuristic techniques and machine learning because these characteristics have a detrimental impact on cognitive radio wireless sensor node lifetime

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Swarm intelligence: novel tools for optimization, feature extraction, and multi-agent system modeling

    Get PDF
    Abstract Animal swarms in nature are able to adapt to dynamic changes in their envi-ronment, and through cooperation they can solve problems that are crucial for their survival. Only by means of local interactions with other members of the swarm and with the environment, they can achieve a common goal more efficiently than it would be done by a single individual. This problem-solving behavior that results from the multiplicity of such interactions is referred to as Swarm Intelligence. The mathematical models of swarming behavior in nature were initially proposed to solve optimization problems. Nevertheless, this decentralized approach can be a valuable tool for a variety of applications, where emerging global patterns represent a solution to the task at hand. Methods for the solution of difficult computational problems based on Swarm Intelligence have been experimentally demonstrated and reported in the literature. However, a general framework that would facilitate their design does not exist yet. In this dissertation, a new general design methodology for Swarm Intelligence tools is proposed. By defining a discrete space in which the members of the swarm can move, and by modifying the rules of local interactions and setting the adequate objective function for solutions evaluation, the proposed methodology is tested in various domains. The dissertation presents a set of case studies, and focuses on two general approaches. One approach is to apply Swarm Intelligence as a tool for optimization and feature extraction, and the other approach is to model multi-agent systems such that they resemble swarms of animals in nature providing them with the ability to autonomously perform a task at hand. Artificial swarms are designed to be autonomous, scalable, robust, and adaptive to the changes in their environment. In this work, the methods that exploit one or more of these features are presented. First, the proposed methodology is validated in a real-world scenario seen as a combinatorial optimization problem. Then a set of novel tools for feature extraction, more precisely the adaptive edge detection and the broken-edge linking in digital images is proposed. A novel data clustering algorithm is also proposed and applied to image segmentation. Finally, a scalable algorithm based on the proposed methodology is developed for distributed task allocation in multi-agent systems, and applied to a swarm of robots. The newly proposed general methodology provides a guideline for future developers of the Swarm Intelligence tools. Los enjambres de animales en la naturaleza son capaces de adaptarse a cambios dinamicos en su entorno y, por medio de la cooperación, pueden resolver problemas ´ cruciales para su supervivencia. Unicamente por medio de interacciones locales con otros miembros del enjambre y con el entorno, pueden lograr un objetivo común de forma más eficiente que lo haría un solo individuo. Este comportamiento problema-resolutivo que es resultado de la multiplicidad de interacciones se denomina Inteligencia de Enjambre. Los modelos matemáticos de comportamiento de enjambres en entornos naturales fueron propuestos inicialmente para resolver problemas de optimización. Sin embargo, esta aproximación descentralizada puede ser una herramienta valiosa en una variedad de aplicaciones donde patrones globales emergentes representan una solución de las tareas actuales. Aunque en la literatura se muestra la utilidad de los métodos de Inteligencia de Enjambre, no existe un entorno de trabajo que facilite su diseño. En esta memoria de tesis proponemos una nueva metodologia general de diseño para herramientas de Inteligencia de Enjambre. Desarrollamos herramientas noveles que representan ejem-plos ilustrativos de su implementación. Probamos la metodología propuesta en varios dominios definiendo un espacio discreto en el que los miembros del enjambre pueden moverse, modificando las reglas de las interacciones locales y fijando la función objetivo adecuada para evaluar las soluciones. La memoria de tesis presenta un conjunto de casos de estudio y se centra en dos aproximaciones generales. Una aproximación es aplicar Inteligencia de Enjambre como herramienta de optimización y extracción de características mientras que la otra es modelar sistemas multi-agente de tal manera que se asemejen a enjambres de animales en la naturaleza a los que se les confiere la habilidad de ejecutar autónomamente la tarea. Los enjambres artificiales están diseñados para ser autónomos, escalables, robustos y adaptables a los cambios en su entorno. En este trabajo, presentamos métodos que explotan una o más de estas características. Primero, validamos la metodología propuesta en un escenario del mundo real visto como un problema de optimización combinatoria. Después, proponemos un conjunto de herramientas noveles para ex-tracción de características, en concreto la detección adaptativa de bordes y el enlazado de bordes rotos en imágenes digitales, y el agrupamiento de datos para segmentación de imágenes. Finalmente, proponemos un algoritmo escalable para la asignación distribuida de tareas en sistemas multi-agente aplicada a enjambres de robots. La metodología general recién propuesta ofrece una guía para futuros desarrolladores deherramientas de Inteligencia de Enjambre

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations

    Comparison of meta-heuristic algorithms for fuzzy modelling of covid-19 illness’ severity classification

    Get PDF
    The world health organization (WHO) proclaimed the COVID-19, commonly known as the coronavirus disease 2019, was a pandemic in March 2020. When people are in close proximity to one another, the virus spreads mostly through the air. It causes some symptoms in the affected person. COVID-19 symptoms are quite variable, ranging from none to severe sickness. As a result, the fuzzy method is seen favourably as a tool for determining the severity of a person’s COVID-19 sickness. However, when applied to a large situation, manually generating a fuzzy parameter is challenging. This could be because of the identification of a large number of fuzzy parameters. A mechanism, such as an automatic procedure, is consequently required to identify the right fuzzy parameters. The meta-heuristic algorithm is regarded as a viable strategy. Five meta-heuristic algorithms were analyzed and utilized in this article to classify the severity of COVID-19 sickness data. The performance of the five meta-heuristic algorithms was evaluated using the COVID-19 symptoms dataset. The COVID-19 symptom dataset was created in accordance with WHO and the Indian ministry of health and family welfare criteria. The findings provide the average classification accuracy for each approach

    A general architecture for robotic swarms

    Get PDF
    Swarms are large groups of simplistic individuals that collectively solve disproportionately complex tasks. Individual swarm agents are limited in perception, mechanically simple, have no global knowledge and are cheap, disposable and fallible. They rely exclusively on local observations and local communications. A swarm has no centralised control. These features are typifed by eusocial insects such as ants and termites, who construct nests, forage and build complex societies comprised of primitive agents. This project created the basis of a general swarm architecture for the control of insect-like robots. The Swarm Architecture is inspired by threshold models of insect behaviour and attempts to capture the salient features of the hive in a closely defined computer program that is hardware agnostic, swarm size indifferent and intended to be applicable to a wide range of swarm tasks. This was achieved by exploiting the inherent limitations of swarm agents. Individual insects were modelled as a machine capable only of perception, locomotion and manipulation. This approximation reduced behaviour primitives to a fixed tractable number and abstracted sensor interpretation. Cooperation was achieved through stigmergy and decisions made via a behaviour threshold model. The Architecture represents an advance on previous robotic swarms in its generality - swarm control software has often been tied to one task and robot configuration. The Architecture's exclusive focus on swarms, sets it apart from existing general cooperative systems, which are not usually explicitly swarm orientated. The Architecture was implemented successfully on both simulated and real-world swarms

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties

    Evolutionary Robot Swarms Under Real-World Constraints

    Get PDF
    Tese de doutoramento em Engenharia Electrotécnica e de Computadores, na especialidade de Automação e Robótica, apresentada ao Departamento de Engenharia Electrotécnica e de Computadores da Faculdade de Ciências e Tecnologia da Universidade de CoimbraNas últimas décadas, vários cientistas e engenheiros têm vindo a estudar as estratégias provenientes da natureza. Dentro das arquiteturas biológicas, as sociedades que vivem em enxames revelam que agentes simplistas, tais como formigas ou pássaros, são capazes de realizar tarefas complexas usufruindo de mecanismos de cooperação. Estes sistemas abrangem todas as condições necessárias para a sobrevivência, incorporando comportamentos de cooperação, competição e adaptação. Na “batalha” sem fim em prol do progresso dos mecanismos artificiais desenvolvidos pelo homem, a ciência conseguiu simular o primeiro comportamento em enxame no final dos anos oitenta. Desde então, muitas outras áreas, entre as quais a robótica, beneficiaram de mecanismos de tolerância a falhas inerentes da inteligência coletiva de enxames. A área de investigação deste estudo incide na robótica de enxame, consistindo num domínio particular dos sistemas robóticos cooperativos que incorpora os mecanismos de inteligência coletiva de enxames na robótica. Mais especificamente, propõe-se uma solução completa de robótica de enxames a ser aplicada em contexto real. Nesta ótica, as operações de busca e salvamento foram consideradas como o caso de estudo principal devido ao nível de complexidade associado às mesmas. Tais operações ocorrem tipicamente em cenários dinâmicos de elevadas dimensões, com condições adversas que colocam em causa a aplicabilidade dos sistemas robóticos cooperativos. Este estudo centra-se nestes problemas, procurando novos desafios que não podem ser ultrapassados através da simples adaptação da literatura da especialidade em algoritmos de enxame, planeamento, controlo e técnicas de tomada de decisão. As contribuições deste trabalho sustentam-se em torno da extensão do método Particle Swarm Optimization (PSO) aplicado a sistemas robóticos cooperativos, denominado de Robotic Darwinian Particle Swarm Optimization (RDPSO). O RDPSO consiste numa arquitetura robótica de enxame distribuída que beneficia do particionamento dinâmico da população de robôs utilizando mecanismos evolucionários de exclusão social baseados na sobrevivência do mais forte de Darwin. No entanto, apesar de estar assente no caso de estudo do RDPSO, a aplicabilidade dos conceitos aqui propostos não se encontra restrita ao mesmo, visto que todos os algoritmos parametrizáveis de enxame de robôs podem beneficiar de uma abordagem idêntica. Os fundamentos em torno do RDPSO são introduzidos, focando-se na dinâmica dos robôs, nos constrangimentos introduzidos pelos obstáculos e pela comunicação, e nas suas propriedades evolucionárias. Considerando a colocação inicial dos robôs no ambiente como algo fundamental para aplicar sistemas de enxames em aplicações reais, é assim introduzida uma estratégia de colocação de robôs realista. Para tal, a população de robôs é dividida de forma hierárquica, em que são utilizadas plataformas mais robustas para colocar as plataformas de enxame no cenário de forma autónoma. Após a colocação dos robôs no cenário, é apresentada uma estratégia para permitir a criação e manutenção de uma rede de comunicação móvel ad hoc com tolerância a falhas. Esta estratégia não considera somente a distância entre robôs, mas também a qualidade do nível de sinal rádio frequência, redefinindo assim a sua aplicabilidade em cenários reais. Os aspetos anteriormente mencionados estão sujeitos a uma análise detalhada do sistema de comunicação inerente ao algoritmo, para atingir uma implementação mais escalável do RDPSO a cenários de elevada complexidade. Esta elevada complexidade inerente à dinâmica dos cenários motivaram a ultimar o desenvolvimento do RDPSO, integrando para o efeito um mecanismo adaptativo baseado em informação contextual (e.g., nível de atividade do grupo). Face a estas considerações, o presente estudo pode contribuir para expandir o estado-da-arte em robótica de enxame com algoritmos inovadores aplicados em contexto real. Neste sentido, todos os métodos propostos foram extensivamente validados e comparados com alternativas, tanto em simulação como com robôs reais. Para além disso, e dadas as limitações destes (e.g., número limitado de robôs, cenários de dimensões limitadas, constrangimentos reais limitados), este trabalho contribui ainda para um maior aprofundamento do estado-da-arte, onde se propõe um modelo macroscópico capaz de capturar a dinâmica inerente ao RDPSO e, até certo ponto, estimar analiticamente o desempenho coletivo dos robôs perante determinada tarefa. Em suma, esta investigação pode ter aplicabilidade prática ao colmatar a lacuna que se faz sentir no âmbito das estratégias de enxames de robôs em contexto real e, em particular, em cenários de busca e salvamento.Over the past decades, many scientists and engineers have been studying nature’s best and time-tested patterns and strategies. Within the existing biological architectures, swarm societies revealed that relatively unsophisticated agents with limited capabilities, such as ants or birds, were able to cooperatively accomplish complex tasks necessary for their survival. Those simplistic systems embrace all the conditions necessary to survive, thus embodying cooperative, competitive and adaptive behaviours. In the never-ending battle to advance artificial manmade mechanisms, computer scientists simulated the first swarm behaviour designed to mimic the flocking behaviour of birds in the late eighties. Ever since, many other fields, such as robotics, have benefited from the fault-tolerant mechanism inherent to swarm intelligence. The area of research presented in this Ph.D. Thesis focuses on swarm robotics, which is a particular domain of multi-robot systems (MRS) that embodies the mechanisms of swarm intelligence into robotics. More specifically, this Thesis proposes a complete swarm robotic solution that can be applied to real-world missions. Although the proposed methods do not depend on any particular application, search and rescue (SaR) operations were considered as the main case study due to their inherent level of complexity. Such operations often occur in highly dynamic and large scenarios, with harsh and faulty conditions, that pose several problems to MRS applicability. This Thesis focuses on these problems raising new challenges that cannot be handled appropriately by simple adaptation of state-of-the-art swarm algorithms, planning, control and decision-making techniques. The contributions of this Thesis revolve around an extension of the Particle Swarm Optimization (PSO) to MRS, denoted as Robotic Darwinian Particle Swarm Optimization (RDPSO). The RDPSO is a distributed swarm robotic architecture that benefits from the dynamical partitioning of the whole swarm of robots by means of an evolutionary social exclusion mechanism based on Darwin’s survival-of-the-fittest. Nevertheless, although currently applied solely to the RDPSO case study, the applicability of all concepts herein proposed is not restricted to it, since all parameterized swarm robotic algorithms may benefit from a similar approach The RDPSO is then proposed and used to devise the applicability of novel approaches. The fundamentals around the RDPSO are introduced by focusing on robots’ dynamics, obstacle avoidance, communication constraints and its evolutionary properties. Afterwards, taking the initial deployment of robots within the environment as a basis for applying swarm robotics systems into real-world applications, the development of a realistic deployment strategy is proposed. For that end, the population of robots is hierarchically divided, wherein larger support platforms autonomously deploy smaller exploring platforms in the scenario, while considering communication constraints and obstacles. After the deployment, a way of ensuring a fault-tolerant multi-hop mobile ad hoc communication network (MANET) is introduced to explicitly exchange information needed in a collaborative realworld task execution. Such strategy not only considers the maximum communication range between robots, but also the minimum signal quality, thus refining the applicability to real-world context. This is naturally followed by a deep analysis of the RDPSO communication system, describing the dynamics of the communication data packet structure shared between teammates. Such procedure is a first step to achieving a more scalable implementation by optimizing the communication procedure between robots. The highly dynamic characteristics of real-world applications motivated us to ultimate the RDPSO development with an adaptive strategy based on a set of context-based evaluation metrics. This thesis contributes to the state-of-the-art in swarm robotics with novel algorithms for realworld applications. All of the proposed approaches have been extensively validated in benchmarking tasks, in simulation, and with real robots. On top of that, and due to the limitations inherent to those (e.g., number of robots, scenario dimensions, real-world constraints), this Thesis further contributes to the state-of-the-art by proposing a macroscopic model able to capture the RDPSO dynamics and, to some extent, analytically estimate the collective performance of robots under a certain task. It is the author’s expectation that this Ph.D. Thesis may shed some light into bridging the reality gap inherent to the applicability of swarm strategies to real-world scenarios, and in particular to SaR operations.FCT - SFRH/BD /73382/201
    corecore