553 research outputs found

    UAV Control in Close Proximities - Ceiling Effect on Battery Lifetime

    Full text link
    With the recent developments in the unmanned aerial vehicles (UAV), it is expected them to interact and collaborate with their surrounding objects, other robots and people in order to wisely plan and execute particular tasks. Although these interaction operations are inherently challenging as compared to free-flight missions, they might bring diverse advantages. One of them is their basic aerodynamic interaction during the flight in close proximities which can result in a reduction of the controller effort. In this study, by collecting real-time data, we have observed that the current drawn by the battery can be decreased while flying very close to the surroundings with the help of the ceiling effect. For the first time, this phenomenon is analyzed in terms of battery lifetime degradation by using a simple full equivalent cycle counting method. Results show that cycling related effect on battery degradation can be reduced by a 15.77% if the UAV can utilize ceiling effect.Comment: ICoIAS 201

    Design of Self-tuning PID Controller Parameters Using Fuzzy Logic Controller for Quad-rotor Helicopter

    Get PDF
    This paper presents the design of a Fuzzy PID controller (FPID) based on fuzzy logic with a PID structure with many valued logic and reasoning. The self-turning Fuzzy PID control take in an error and the rate of change of error of the altitude and attitude of the quadrotor as the input to the fuzzy controller and use the fuzzy rules to adjust the PID parameter automatically. Simulations have been conducted to observe the differences in controlling the quadrotor in flight using the new FPID controller instead of using PID controller. The effectiveness of the developed FPID is verified using the dSPACE platform whereby the Simulink model of the controller is converted to a real time system to generate the control signals for the control of quad rotor helicopter

    A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems

    Get PDF
    Small-scale rotorcraft unmanned robotic systems (SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years (2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem, trends, and challenges are described from three aspects. Conclusions of the paper are presented, and the future of SRURSs is discussed to enable further research interests
    • …
    corecore