1,602 research outputs found

    Non-linear echo cancellation - a Bayesian approach

    Get PDF
    Echo cancellation literature is reviewed, then a Bayesian model is introduced and it is shown how how it can be used to model and fit nonlinear channels. An algorithm for cancellation of echo over a nonlinear channel is developed and tested. It is shown that this nonlinear algorithm converges for both linear and nonlinear channels and is superior to linear echo cancellation for canceling an echo through a nonlinear echo-path channel

    Spatial-temporal Graph Based Multi-channel Speaker Verification With Ad-hoc Microphone Arrays

    Full text link
    The performance of speaker verification degrades significantly in adverse acoustic environments with strong reverberation and noise. To address this issue, this paper proposes a spatial-temporal graph convolutional network (GCN) method for the multi-channel speaker verification with ad-hoc microphone arrays. It includes a feature aggregation block and a channel selection block, both of which are built on graphs. The feature aggregation block fuses speaker features among different time and channels by a spatial-temporal GCN. The graph-based channel selection block discards the noisy channels that may contribute negatively to the system. The proposed method is flexible in incorporating various kinds of graphs and prior knowledge. We compared the proposed method with six representative methods in both real-world and simulated environments. Experimental results show that the proposed method achieves a relative equal error rate (EER) reduction of 15.39%\mathbf{15.39\%} lower than the strongest referenced method in the simulated datasets, and 17.70%\mathbf{17.70\%} lower than the latter in the real datasets. Moreover, its performance is robust across different signal-to-noise ratios and reverberation time

    Ad Hoc Microphone Array Calibration: Euclidean Distance Matrix Completion Algorithm and Theoretical Guarantees

    Get PDF
    This paper addresses the problem of ad hoc microphone array calibration where only partial information about the distances between microphones is available. We construct a matrix consisting of the pairwise distances and propose to estimate the missing entries based on a novel Euclidean distance matrix completion algorithm by alternative low-rank matrix completion and projection onto the Euclidean distance space. This approach confines the recovered matrix to the EDM cone at each iteration of the matrix completion algorithm. The theoretical guarantees of the calibration performance are obtained considering the random and locally structured missing entries as well as the measurement noise on the known distances. This study elucidates the links between the calibration error and the number of microphones along with the noise level and the ratio of missing distances. Thorough experiments on real data recordings and simulated setups are conducted to demonstrate these theoretical insights. A significant improvement is achieved by the proposed Euclidean distance matrix completion algorithm over the state-of-the-art techniques for ad hoc microphone array calibration.Comment: In Press, available online, August 1, 2014. http://www.sciencedirect.com/science/article/pii/S0165168414003508, Signal Processing, 201

    A robust sequential hypothesis testing method for brake squeal localisation

    Get PDF
    This contribution deals with the in situ detection and localisation of brake squeal in an automobile. As brake squeal is emitted from regions known a priori, i.e., near the wheels, the localisation is treated as a hypothesis testing problem. Distributed microphone arrays, situated under the automobile, are used to capture the directional properties of the sound field generated by a squealing brake. The spatial characteristics of the sampled sound field is then used to formulate the hypothesis tests. However, in contrast to standard hypothesis testing approaches of this kind, the propagation environment is complex and time-varying. Coupled with inaccuracies in the knowledge of the sensor and source positions as well as sensor gain mismatches, modelling the sound field is difficult and standard approaches fail in this case. A previously proposed approach implicitly tried to account for such incomplete system knowledge and was based on ad hoc likelihood formulations. The current paper builds upon this approach and proposes a second approach, based on more solid theoretical foundations, that can systematically account for the model uncertainties. Results from tests in a real setting show that the proposed approach is more consistent than the prior state-of-the-art. In both approaches, the tasks of detection and localisation are decoupled for complexity reasons. The localisation (hypothesis testing) is subject to a prior detection of brake squeal and identification of the squeal frequencies. The approaches used for the detection and identification of squeal frequencies are also presented. The paper, further, briefly addresses some practical issues related to array design and placement. (C) 2019 Author(s)

    Seeing the sound: a new multimodal imaging device for computer vision

    Get PDF
    Audio imaging can play a fundamental role in computer vision, in particular in automated surveillance, boosting the accuracy of current systems based on standard optical cameras. We present here a new hybrid device for acousticoptic imaging, whose characteristics are tailored to automated surveillance. In particular, the device allows realtime, high frame rate generation of an acoustic map, overlaid over a standard optical image using a geometric calibration of audio and video streams. We demonstrate the potentialities of the device for target tracking on three challenging setup showing the advantages of using acoustic images against baseline algorithms on image tracking. In particular, the proposed approach is able to overcome, often dramatically, visual tracking with state-of-art algorithms, dealing efficiently with occlusions, abrupt variations in visual appearence and camouflage. These results pave the way to a widespread use of acoustic imaging in application scenarios such as in surveillance and security
    corecore