8,938 research outputs found

    Audio-based event detection for sports video

    Get PDF
    In this paper, we present an audio-based event detection approach shown to be effective when applied to the Sports broadcast data. The main benefit of this approach is the ability to recognise patterns that indicate high levels of crowd response which can be correlated to key events. By applying Hidden Markov Model-based classifiers, where the predefined content classes are parameterised using Mel-Frequency Cepstral Coefficients, we were able to eliminate the need for defining a heuristic set of rules to determine event detection, thus avoiding a two-class approach shown not to be suitable for this problem. Experimentation indicated that this is an effective method for classifying crowd response in Soccer matches, thus providing a basis for automatic indexing and summarisation

    An audio-based sports video segmentation and event detection algorithm

    Get PDF
    In this paper, we present an audio-based event detection algorithm shown to be effective when applied to Soccer video. The main benefit of this approach is the ability to recognise patterns that display high levels of crowd response correlated to key events. The soundtrack from a Soccer sequence is first parameterised using Mel-frequency Cepstral coefficients. It is then segmented into homogenous components using a windowing algorithm with a decision process based on Bayesian model selection. This decision process eliminated the need for defining a heuristic set of rules for segmentation. Each audio segment is then labelled using a series of Hidden Markov model (HMM) classifiers, each a representation of one of 6 predefined semantic content classes found in Soccer video. Exciting events are identified as those segments belonging to a crowd cheering class. Experimentation indicated that the algorithm was more effective for classifying crowd response when compared to traditional model-based segmentation and classification techniques

    Learning models of plant behavior for anomaly detection and condition monitoring

    Get PDF
    Providing engineers and asset managers with a too] which can diagnose faults within transformers can greatly assist decision making on such issues as maintenance, performance and safety. However, the onus has always been on personnel to accurately decide how serious a problem is and how urgently maintenance is required. In dealing with the large volumes of data involved, it is possible that faults may not be noticed until serious damage has occurred. This paper proposes the integration of a newly developed anomaly detection technique with an existing diagnosis system. By learning a Hidden Markov Model of healthy transformer behavior, unexpected operation, such as when a fault develops, can be flagged for attention. Faults can then be diagnosed using the existing system and maintenance scheduled as required, all at a much earlier stage than would previously have been possible

    Event-triggered Learning

    Full text link
    The efficient exchange of information is an essential aspect of intelligent collective behavior. Event-triggered control and estimation achieve some efficiency by replacing continuous data exchange between agents with intermittent, or event-triggered communication. Typically, model-based predictions are used at times of no data transmission, and updates are sent only when the prediction error grows too large. The effectiveness in reducing communication thus strongly depends on the quality of the prediction model. In this article, we propose event-triggered learning as a novel concept to reduce communication even further and to also adapt to changing dynamics. By monitoring the actual communication rate and comparing it to the one that is induced by the model, we detect a mismatch between model and reality and trigger model learning when needed. Specifically, for linear Gaussian dynamics, we derive different classes of learning triggers solely based on a statistical analysis of inter-communication times and formally prove their effectiveness with the aid of concentration inequalities

    An intelligent information forwarder for healthcare big data systems with distributed wearable sensors

    Get PDF
    © 2016 IEEE. An increasing number of the elderly population wish to live an independent lifestyle, rather than rely on intrusive care programmes. A big data solution is presented using wearable sensors capable of carrying out continuous monitoring of the elderly, alerting the relevant caregivers when necessary and forwarding pertinent information to a big data system for analysis. A challenge for such a solution is the development of context-awareness through the multidimensional, dynamic and nonlinear sensor readings that have a weak correlation with observable human behaviours and health conditions. To address this challenge, a wearable sensor system with an intelligent data forwarder is discussed in this paper. The forwarder adopts a Hidden Markov Model for human behaviour recognition. Locality sensitive hashing is proposed as an efficient mechanism to learn sensor patterns. A prototype solution is implemented to monitor health conditions of dispersed users. It is shown that the intelligent forwarders can provide the remote sensors with context-awareness. They transmit only important information to the big data server for analytics when certain behaviours happen and avoid overwhelming communication and data storage. The system functions unobtrusively, whilst giving the users peace of mind in the knowledge that their safety is being monitored and analysed

    Approaches to Non-Intrusive Load Monitoring (NILM) in the Home

    Get PDF
    When designing and implementing an intelligent energy conservation system for the home, it is essential to have insight into the activities and actions of the occupants. In particular, it is important to understand what appliances are being used and when. In the computational sustainability research community this is known as load disaggregation or Non-Intrusive Load Monitoring (NILM). NILM is a foundational algorithm that can disaggregate a home’s power usage into the individual appliances that are running, identify energy conservation opportunities. This depth report will focus on NILM algorithms, their use and evaluation. We will examine and evaluate the anatomy of NILM, looking at techniques using load monitoring, event detection, feature ex- traction, classification, and accuracy measurement.&nbsp
    corecore