21,803 research outputs found

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Tune in to your emotions: a robust personalized affective music player

    Get PDF
    The emotional power of music is exploited in a personalized affective music player (AMP) that selects music for mood enhancement. A biosignal approach is used to measure listeners’ personal emotional reactions to their own music as input for affective user models. Regression and kernel density estimation are applied to model the physiological changes the music elicits. Using these models, personalized music selections based on an affective goal state can be made. The AMP was validated in real-world trials over the course of several weeks. Results show that our models can cope with noisy situations and handle large inter-individual differences in the music domain. The AMP augments music listening where its techniques enable automated affect guidance. Our approach provides valuable insights for affective computing and user modeling, for which the AMP is a suitable carrier application

    Semantic data mining and linked data for a recommender system in the AEC industry

    Get PDF
    Even though it can provide design teams with valuable performance insights and enhance decision-making, monitored building data is rarely reused in an effective feedback loop from operation to design. Data mining allows users to obtain such insights from the large datasets generated throughout the building life cycle. Furthermore, semantic web technologies allow to formally represent the built environment and retrieve knowledge in response to domain-specific requirements. Both approaches have independently established themselves as powerful aids in decision-making. Combining them can enrich data mining processes with domain knowledge and facilitate knowledge discovery, representation and reuse. In this article, we look into the available data mining techniques and investigate to what extent they can be fused with semantic web technologies to provide recommendations to the end user in performance-oriented design. We demonstrate an initial implementation of a linked data-based system for generation of recommendations

    Ubiquitous emotion-aware computing

    Get PDF
    Emotions are a crucial element for personal and ubiquitous computing. What to sense and how to sense it, however, remain a challenge. This study explores the rare combination of speech, electrocardiogram, and a revised Self-Assessment Mannequin to assess people’s emotions. 40 people watched 30 International Affective Picture System pictures in either an office or a living-room environment. Additionally, their personality traits neuroticism and extroversion and demographic information (i.e., gender, nationality, and level of education) were recorded. The resulting data were analyzed using both basic emotion categories and the valence--arousal model, which enabled a comparison between both representations. The combination of heart rate variability and three speech measures (i.e., variability of the fundamental frequency of pitch (F0), intensity, and energy) explained 90% (p < .001) of the participants’ experienced valence--arousal, with 88% for valence and 99% for arousal (ps < .001). The six basic emotions could also be discriminated (p < .001), although the explained variance was much lower: 18–20%. Environment (or context), the personality trait neuroticism, and gender proved to be useful when a nuanced assessment of people’s emotions was needed. Taken together, this study provides a significant leap toward robust, generic, and ubiquitous emotion-aware computing
    corecore