2,879 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Resource-aware task scheduling by an adversarial bandit solver method in wireless sensor networks

    Get PDF
    This article was published in the Eurasip Journal on Wireless Communications and Networking [©2016 Springer International Publishing.] and the definite version is available at: http://dx.doi.org/10.1186/s13638-015-0515-y. The article website is at: http://jwcn.eurasipjournals.springeropen.com/articles/10.1186/s13638-015-0515-yA wireless sensor network (WSN) is composed of a large number of tiny sensor nodes. Sensor nodes are very resource-constrained, since nodes are often battery-operated and energy is a scarce resource. In this paper, a resource-aware task scheduling (RATS) method is proposed with better performance/resource consumption trade-off in a WSN. Particularly, RATS exploits an adversarial bandit solver method called exponential weight for exploration and exploitation (Exp3) for target tracking application of WSN. The proposed RATS method is compared and evaluated with the existing scheduling methods exploiting online learning: distributed independent reinforcement learning (DIRL), reinforcement learning (RL), and cooperative reinforcement learning (CRL), in terms of the tracking quality/energy consumption trade-off in a target tracking application. The communication overhead and computational effort of these methods are also computed. Simulation results show that the proposed RATS outperforms the existing methods DIRL and RL in terms of achieved tracking performance. © 2016, Khan.Publishe

    Machine Learning in Wireless Sensor Networks for Smart Cities:A Survey

    Get PDF
    Artificial intelligence (AI) and machine learning (ML) techniques have huge potential to efficiently manage the automated operation of the internet of things (IoT) nodes deployed in smart cities. In smart cities, the major IoT applications are smart traffic monitoring, smart waste management, smart buildings and patient healthcare monitoring. The small size IoT nodes based on low power Bluetooth (IEEE 802.15.1) standard and wireless sensor networks (WSN) (IEEE 802.15.4) standard are generally used for transmission of data to a remote location using gateways. The WSN based IoT (WSN-IoT) design problems include network coverage and connectivity issues, energy consumption, bandwidth requirement, network lifetime maximization, communication protocols and state of the art infrastructure. In this paper, the authors propose machine learning methods as an optimization tool for regular WSN-IoT nodes deployed in smart city applications. As per the author’s knowledge, this is the first in-depth literature survey of all ML techniques in the field of low power consumption WSN-IoT for smart cities. The results of this unique survey article show that the supervised learning algorithms have been most widely used (61%) as compared to reinforcement learning (27%) and unsupervised learning (12%) for smart city applications
    corecore