521 research outputs found

    Energy Efficient Routing Protocols and algorithms for Wireless Sensor Networks a A Survey

    Get PDF
    Wireless Sensor Networks (WSNs) are an emerging technology for monitoring physical world. The sensor nodes are capable of sensing various types of environmental conditions, have some processing capabilities and ability to communicate the sensed data through wireless communication. Routing algorithms for WSNs are responsible for selecting and maintaining the routes in the network and ensure reliable and effective communication in limited periods. The energy constraint of WSNs make energy saving become the most important objective of various routing algorithms. In this paper, a survey of routing protocols and algorithms used in WSNs is presented with energy efficiency as the main goal

    Historical Building Monitoring Using an Energy-Efficient Scalable Wireless Sensor Network Architecture

    Get PDF
    We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties

    A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Full text link
    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research

    Resilient Wireless Sensor Networks Using Topology Control: A Review

    Get PDF
    Wireless sensor networks (WSNs) may be deployed in failure-prone environments, and WSNs nodes easily fail due to unreliable wireless connections, malicious attacks and resource-constrained features. Nevertheless, if WSNs can tolerate at most losing k − 1 nodes while the rest of nodes remain connected, the network is called k − connected. k is one of the most important indicators for WSNs’ self-healing capability. Following a WSN design flow, this paper surveys resilience issues from the topology control and multi-path routing point of view. This paper provides a discussion on transmission and failure models, which have an important impact on research results. Afterwards, this paper reviews theoretical results and representative topology control approaches to guarantee WSNs to be k − connected at three different network deployment stages: pre-deployment, post-deployment and re-deployment. Multi-path routing protocols are discussed, and many NP-complete or NP-hard problems regarding topology control are identified. The challenging open issues are discussed at the end. This paper can serve as a guideline to design resilient WSNs

    TECA : A Topology and Energy Control Algorithm for Sensor Networks

    Full text link
    A main challenge in the field of sensor networks is energy efficiency to prolong the sensor's operational lifetime. Due to low-cost hardware, nodes' placement or hardware design, recharging might be impossible. Since most energy is spent for radio communication, many approaches exist that put sensor nodes into sleep mode with the communication radio turned off. In this paper, we propose a new Topology and Energy Control Algorithm called TECA. We will show the performance of TECA by means of extensive simulations compared to two other approaches. In terms of operational lifetime, packet delivery and network connectivity, TECA shows promising results. Unlike many other simulations, we use an appropriate link loss model that was verified in reality. By measuring packet delivery rates, TECA is able to adapt to different environments while still maintaining network connectivity

    Energy-aware Gossip Protocol for Wireless Sensor Networks

    Get PDF
    Dissertação de mestrado em Engenharia InformáticaIn Wireless Sensor Networks (WSNs), typically composed of nodes with resource constraints, leveraging efficient processes is crucial to enhance the network longevity and consequently the sustainability in ultra-dense and heterogeneous environments, such as smart cities. Epidemic algorithms are usually efficient in delivering packets to a sink or to all it’s peers but have poor energy efficiency due to the amount of packet redundancy. Directional algorithms, such as Minimum Cost Forward Algorithm (MCFA) or Directed Diffusion, yield high energy efficiency but fail to handle mobile environments, and have poor network coverage. This work proposes a new epidemic algorithm that uses the current energy state of the network to create a topology that is cyclically updated, fault tolerant, whilst being able to handle the challenges of a static or mobile heterogeneous network. Depending on the application, tuning in the protocol settings can be made to prioritise desired characteristics. The proposed protocol has a small computational footprint and the required memory is proportional not to the size of the network, but to the number of neighbours of a node, enabling high scalability. The proposed protocol was tested, using a ESP8266 as an energy model reference, in a simulated environment with ad-hoc wireless nodes. It was implemented at the application level with UDP sockets, and resulted in a highly energy efficient protocol, capable of leveraging extended network longevity with different static or mobile topologies, with results comparable to a static directional algorithm in delivery efficiency.Em Redes de Sensores sem Fios (RSF), tipicamente compostas por nós com recursos lim-itados, alavancar processos eficientes é crucial para aumentar o tempo de vida da rede e consequentemente a sustentabilidade em ambientes heterogéneos e ultra densos, como cidades inteligentes por exemplo. Algoritmos epidêmicos são geralmente eficientes em en-tregar pacotes para um sink ou para todos os nós da rede, no entanto têm baixa eficiência energética devido a alta taxa de duplicação de pacotes. Algoritmos direcionais, como o MCFA ou de Difusão Direta, rendem alta eficiência energética mas não conseguem lidar com ambientes móveis, e alcançam baixa cobertura da rede. Este trabalho propõe um novo protocolo epidêmico que faz uso do estado energético atual da rede para criar uma topologia que por sua vez atualizada ciclicamente, tolerante a falhas, ao mesmo tempo que é capaz de lidar com os desafios de uma rede heterogênea estática ou móvel. A depender da aplicação, ajustes podem ser feitos às configurações do protocolo para que o mesmo priorize determinadas características. O protocolo proposto tem um pequeno impacto computacional e a memória requerida é proporcional somente à quantidade de vizinhos do nó, não ao tamanho da rede inteira, permitindo assim alta escalabilidade. O algoritmo proposto foi testado fazendo uso do modelo energético de uma ESP8266, em um ambiente simulado com uma rede sem fios ad-hoc. Foi implementado à nível aplicacional com sockets UDP, e resultou em um protocol energeticamente eficiente, capaz de disponibilizar alta longevidade da rede mesmo com diferentes topologias estáticas ou móveis com resultados comparáveis à um protocolo direcional em termos de eficiência na entrega de pacotes

    Energy efficient clustering and secure data aggregation in wireless sensor networks

    Get PDF
    Communication consumes the majority of a wireless sensor network\u27s limited energy. There are several ways to reduce the communication cost. Two approaches used in this work are clustering and in-network aggregation. The choice of a cluster head within each cluster is important because cluster heads use additional energy for their responsibilities and that burden needs to be carefully distributed. We introduce the energy constrained minimum dominating set (ECDS) to model the problem of optimally choosing cluster heads in the presence of energy constraints. We show its applicability to sensor networks and give an approximation algorithm of O(log n) for solving the ECDS problem. We propose a distributed algorithm for the constrained dominating set which runs in O(log n log [triangle]) rounds with high probability. We show experimentally that the distributed algorithm performs well in terms of energy usage, node lifetime, and clustering time and thus is very suitable for wireless sensor networks. Using aggregation in wireless sensor networks is another way to reduce the overall communication cost. However, changes in security are necessary when in- network aggregation is applied. Traditional end-to-end security is not suitable for use with in-network aggregation. A corrupted sensor has access to the intermediate data and can falsify results. Additively homomorphic encryption allows for aggregation of encrypted values, with the result being the same as the result as if unencrypted data were aggregated. Using public key cryptography, digital signatures can be used to achieve integrity. We propose a new algorithm using homomorphic encryption and additive digital signatures to achieve confidentiality, integrity and availability for in- network aggregation in wireless sensor networks. We prove that our digital signature algorithm which is based on Elliptic Curve Digital Signature Algorithm (ECDSA) is at least as secure as ECDSA. Even without in-network aggregation, security is a challenge in wireless sensor networks. In wireless sensor networks, not all messages need to be secured with the same level of encryption. We propose a new algorithm which provides adequate levels of security while providing much higher availablility [sic] than other security protocols. Our approach uses similar amounts of energy as a network without security --Abstract, page iv

    Secure-Rpl: Approach To Prevent Resource-Based Attacks In Wireless Sensor Networks Using Balanced Clustering

    Get PDF
    Internet of Things (IoT) is an evolving computing technology that enables an interconnection amongst physical devices, which offers many advantages, such as easy access to information, cost effectiveness, automation, efficient resource utilisation, reduced human effort and high productivity, all of which have attracted many industry players and researchers. However, the involvement of a vast number of devices and IoT users introduces many issues, including those related to quality of service and security. In IoT, routing amongst resource-constrained devices and nodes is realised by using the routing protocol for a low-power and lossy network (RPL), which selects an optimal route according to the specific objective function

    A Mobile Ad Hoc Network Routing Protocols: A Comparative Study

    Get PDF
    Mobile Ad hoc NETworks (MANET), are complex and distributed networks that are dynamic. Which are infrastructure less and multi-hop in nature. The communication of a node can be either direct or through intermediate nodes without a fixed and dedicated infrastructure. Hence it is necessary to design an efficient routing protocol for ad hoc network which can address the issues of MANET efficiently. In ad hoc, routing algorithms are classified into nine categories namely: source-initiated (reactive), table-driven (proactive), hybrid, hierarchical, multipath, multicast, location-aware, geographical-multicast and power-aware. This paper presents a survey and to review a comparative study about various routing protocols under each of these categories. Additionally, brief discussions about major routing issues are addressed. This survey paper focuses on the taxonomy related to ad hoc routing techniques and compares the features of routing protocols
    corecore