21,698 research outputs found

    Wireless body area network mobility-aware task offloading scheme

    Get PDF
    The increasing amount of user equipment (UE) and the rapid advances in wireless body area networks bring revolutionary changes in healthcare systems. However, due to the strict requirements on size, reliability and battery lifetime of UE devices, it is difficult for them to execute latency sensitive or computation intensive tasks effectively. In this paper, we aim to enhance the UE computation capacity by utilizing small size coordinator-based mobile edge computing (C-MEC) servers. In this way, the system complexity, computation resources, and energy consumption are considerably transferred from the UE to the C-MEC, which is a practical approach since C-MEC is power charged, in contrast to the UE. First, the system architecture and the mobility model are presented. Second, several transmission mechanisms are analyzed along with the proposed mobility-aware cooperative task offloading scheme. Numerous selected performance metrics are investigated regarding the number of executed tasks, the percentage of failed tasks, average service time, and the energy consumption of each MEC. The results validate the advantage of task offloading schemes compared with the traditional relay-based technique regarding the number of executed tasks. Moreover, one can obtain that the proposed scheme archives noteworthy benefits, such as low latency and efficiently balance the energy consumption of C-MECs

    A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing

    Full text link
    Edge computing is promoted to meet increasing performance needs of data-driven services using computational and storage resources close to the end devices, at the edge of the current network. To achieve higher performance in this new paradigm one has to consider how to combine the efficiency of resource usage at all three layers of architecture: end devices, edge devices, and the cloud. While cloud capacity is elastically extendable, end devices and edge devices are to various degrees resource-constrained. Hence, an efficient resource management is essential to make edge computing a reality. In this work, we first present terminology and architectures to characterize current works within the field of edge computing. Then, we review a wide range of recent articles and categorize relevant aspects in terms of 4 perspectives: resource type, resource management objective, resource location, and resource use. This taxonomy and the ensuing analysis is used to identify some gaps in the existing research. Among several research gaps, we found that research is less prevalent on data, storage, and energy as a resource, and less extensive towards the estimation, discovery and sharing objectives. As for resource types, the most well-studied resources are computation and communication resources. Our analysis shows that resource management at the edge requires a deeper understanding of how methods applied at different levels and geared towards different resource types interact. Specifically, the impact of mobility and collaboration schemes requiring incentives are expected to be different in edge architectures compared to the classic cloud solutions. Finally, we find that fewer works are dedicated to the study of non-functional properties or to quantifying the footprint of resource management techniques, including edge-specific means of migrating data and services.Comment: Accepted in the Special Issue Mobile Edge Computing of the Wireless Communications and Mobile Computing journa
    • …
    corecore