4,938 research outputs found

    Dynamic Reconfiguration for Software and Hardware Heterogeneous Real-time WSN

    Get PDF
    International audienceWireless Sensor Network (WSN) technology has imposed itself in civilian and industrial applications as a promising technology for wireless monitoring due to its wireless connectivity, removing many hardware constraints. Initially used in low frequency sampling applications, the increasing performances of electronic circuits has driven WSNs to integrate more powerful computation units, paving the way for a new generation of applications based on distributed computation. These new applications (process control, active control, visual surveillance, multimedia streaming) involving medium to heavy computation present real-time requirements at node level where reactivity becomes a primary concern as well as at the network level where latency must be bounded. In this paper, we present the implementation of a high-level language MinTax coupled with an in-situ compilation solution for real time Operating Systems enabling energy-aware dynamic reconfiguration while supporting hardware heterogeneity in Wireless Sensor Networks

    From missions to systems : generating transparently distributable programs for sensor-oriented systems

    Get PDF
    Early Wireless Sensor Networks aimed simply to collect as much data as possible for as long as possible. While this remains true in selected cases, the majority of future sensor network applications will demand much more intelligent use of their resources as networks increase in scale and support multiple applications and users. Specifically, we argue that a computational model is needed in which the ways that data flows through networks, and the ways in which decisions are made based on that data, is transparently distributable and relocatable as requirements evolve. In this paper we present an approach to achieving this using high-level mission specifications from which we can automatically derive transparently distributable programs.Postprin

    Over-the-air software updates in the internet of things : an overview of key principles

    Get PDF
    Due to the fast pace at which IoT is evolving, there is an increasing need to support over-theair software updates for security updates, bug fixes, and software extensions. To this end, multiple over-the-air techniques have been proposed, each covering a specific aspect of the update process, such as (partial) code updates, data dissemination, and security. However, each technique introduces overhead, especially in terms of energy consumption, thereby impacting the operational lifetime of the battery constrained devices. Until now, a comprehensive overview describing the different update steps and quantifying the impact of each step is missing in the scientific literature, making it hard to assess the overall feasibility of an over-the-air update. To remedy this, our article analyzes which parts of an IoT operating system are most updated after device deployment, proposes a step-by-step approach to integrate software updates in IoT solutions, and quantifies the energy cost of each of the involved steps. The results show that besides the obvious dissemination cost, other phases such as security also introduce a significant overhead. For instance, a typical firmware update requires 135.026 mJ, of which the main portions are data dissemination (63.11 percent) and encryption (5.29 percent). However, when modular updates are used instead, the energy cost (e.g., for a MAC update) is reduced to 26.743 mJ (48.69 percent for data dissemination and 26.47 percent for encryption)

    Process-Based Design and Integration of Wireless Sensor Network Applications

    Get PDF
    Abstract Wireless Sensor and Actuator Networks (WSNs) are distributed sensor and actuator networks that monitor and control real-world phenomena, enabling the integration of the physical with the virtual world. They are used in domains like building automation, control systems, remote healthcare, etc., which are all highly process-driven. Today, tools and insights of Business Process Modeling (BPM) are not used to model WSN logic, as BPM focuses mostly on the coordination of people and IT systems and neglects the integration of embedded IT. WSN development still requires significant special-purpose, low-level, and manual coding of process logic. By exploiting similarities between WSN applications and business processes, this work aims to create a holistic system enabling the modeling and execution of executable processes that integrate, coordinate, and control WSNs. Concretely, we present a WSNspecific extension for Business Process Modeling Notation (BPMN) and a compiler that transforms the extended BPMN models into WSN-specific code to distribute process execution over both a WSN and a standard business process engine. The developed tool-chain allows modeling of an independent control loop for the WSN.

    Portability, compatibility and reuse of MAC protocols across different IoT radio platforms

    Get PDF
    To cope with the diversity of Internet of Things (loT) requirements, a large number of Medium Access Control (MAC) protocols have been proposed in scientific literature, many of which are designed for specific application domains. However, for most of these MAC protocols, no multi-platform software implementation is available. In fact, the path from conceptual MAC protocol proposed in theoretical papers, towards an actual working implementation is rife with pitfalls. (i) A first problem is the timing bugs, frequently encountered in MAC implementations. (ii) Furthermore, once implemented, many MAC protocols are strongly optimized for specific hardware, thereby limiting the potential of software reuse or modifications. (iii) Finally, in real-life conditions, the performance of the MAC protocol varies strongly depending on the actual underlying radio chip. As a result, the same MAC protocol implementation acts differently per platform, resulting in unpredictable/asymmetrical behavior when multiple platforms are combined in the same network. This paper describes in detail the challenges related to multi-platform MAC development, and experimentally quantifies how the above issues impact the MAC protocol performance when running MAC protocols on multiple radio chips. Finally, an overall methodology is proposed to avoid the previously mentioned cross-platform compatibility issues. (C) 2018 Elsevier B.V. All rights reserved

    Towards Business Processes Orchestrating the Physical Enterprise with Wireless Sensor Networks

    Get PDF
    The industrial adoption of wireless sensor net- works (WSNs) is hampered by two main factors. First, there is a lack of integration of WSNs with business process modeling languages and back-ends. Second, programming WSNs is still challenging as it is mainly performed at the operating system level. To this end, we provide makeSense: a unified programming framework and a compilation chain that, from high-level business process specifications, generates code ready for deployment on WSN nodes

    An eco-friendly hybrid urban computing network combining community-based wireless LAN access and wireless sensor networking

    Get PDF
    Computer-enhanced smart environments, distributed environmental monitoring, wireless communication, energy conservation and sustainable technologies, ubiquitous access to Internet-located data and services, user mobility and innovation as a tool for service differentiation are all significant contemporary research subjects and societal developments. This position paper presents the design of a hybrid municipal network infrastructure that, to a lesser or greater degree, incorporates aspects from each of these topics by integrating a community-based Wi-Fi access network with Wireless Sensor Network (WSN) functionality. The former component provides free wireless Internet connectivity by harvesting the Internet subscriptions of city inhabitants. To minimize session interruptions for mobile clients, this subsystem incorporates technology that achieves (near-)seamless handover between Wi-Fi access points. The WSN component on the other hand renders it feasible to sense physical properties and to realize the Internet of Things (IoT) paradigm. This in turn scaffolds the development of value-added end-user applications that are consumable through the community-powered access network. The WSN subsystem invests substantially in ecological considerations by means of a green distributed reasoning framework and sensor middleware that collaboratively aim to minimize the network's global energy consumption. Via the discussion of two illustrative applications that are currently being developed as part of a concrete smart city deployment, we offer a taste of the myriad of innovative digital services in an extensive spectrum of application domains that is unlocked by the proposed platform

    A low-power opportunistic communication protocol for wearable applications

    Get PDF
    © 2015 IEEE.Recent trends in wearable applications demand flexible architectures being able to monitor people while they move in free-living environments. Current solutions use either store-download-offline processing or simple communication schemes with real-time streaming of sensor data. This limits the applicability of wearable applications to controlled environments (e.g, clinics, homes, or laboratories), because they need to maintain connectivity with the base station throughout the monitoring process. In this paper, we present the design and implementation of an opportunistic communication framework that simplifies the general use of wearable devices in free-living environments. It relies on a low-power data collection protocol that allows the end user to opportunistically, yet seamlessly manage the transmission of sensor data. We validate the feasibility of the framework by demonstrating its use for swimming, where the normal wireless communication is constantly interfered by the environment
    • 

    corecore