7,290 research outputs found

    Energy-aware Load Balancing Policies for the Cloud Ecosystem

    Full text link
    The energy consumption of computer and communication systems does not scale linearly with the workload. A system uses a significant amount of energy even when idle or lightly loaded. A widely reported solution to resource management in large data centers is to concentrate the load on a subset of servers and, whenever possible, switch the rest of the servers to one of the possible sleep states. We propose a reformulation of the traditional concept of load balancing aiming to optimize the energy consumption of a large-scale system: {\it distribute the workload evenly to the smallest set of servers operating at an optimal energy level, while observing QoS constraints, such as the response time.} Our model applies to clustered systems; the model also requires that the demand for system resources to increase at a bounded rate in each reallocation interval. In this paper we report the VM migration costs for application scaling.Comment: 10 Page

    Toward sustainable data centers: a comprehensive energy management strategy

    Get PDF
    Data centers are major contributors to the emission of carbon dioxide to the atmosphere, and this contribution is expected to increase in the following years. This has encouraged the development of techniques to reduce the energy consumption and the environmental footprint of data centers. Whereas some of these techniques have succeeded to reduce the energy consumption of the hardware equipment of data centers (including IT, cooling, and power supply systems), we claim that sustainable data centers will be only possible if the problem is faced by means of a holistic approach that includes not only the aforementioned techniques but also intelligent and unifying solutions that enable a synergistic and energy-aware management of data centers. In this paper, we propose a comprehensive strategy to reduce the carbon footprint of data centers that uses the energy as a driver of their management procedures. In addition, we present a holistic management architecture for sustainable data centers that implements the aforementioned strategy, and we propose design guidelines to accomplish each step of the proposed strategy, referring to related achievements and enumerating the main challenges that must be still solved.Peer ReviewedPostprint (author's final draft

    Container-based load balancing for energy efficiency in software-defined edge computing environment

    Get PDF
    The workload generated by the Internet of Things (IoT)-based infrastructure is often handled by the cloud data centers (DCs). However, in recent time, an exponential increase in the deployment of the IoT-based infrastructure has escalated the workload on the DCs. So, these DCs are not fully capable to meet the strict demand of IoT devices in regard to the lower latency as well as high data rate while provisioning IoT workloads. Therefore, to reinforce the latency-sensitive workloads, an intersection layer known as edge computing has successfully balanced the entire service provisioning landscape. In this IoT-edge-cloud ecosystem, large number of interactions and data transmissions among different layer can increase the load on underlying network infrastructure. So, software-defined edge computing has emerged as a viable solution to resolve these latency-sensitive workload issues. Additionally, energy consumption has been witnessed as a major challenge in resource-constrained edge systems. The existing solutions are not fully compatible in Software-defined Edge ecosystem for handling IoT workloads with an optimal trade-off between energy-efficiency and latency. Hence, this article proposes a lightweight and energy-efficient container-as-a-service (CaaS) approach based on the software-define edge computing to provision the workloads generated from the latency-sensitive IoT applications. A Stackelberg game is formulated for a two-period resource allocation between end-user/IoT devices and Edge devices considering the service level agreement. Furthermore, an energy-efficient ensemble for container allocation, consolidation and migration is also designed for load balancing in software-defined edge computing environment. The proposed approach is validated through a simulated environment with respect to CPU serve time, network serve time, overall delay, lastly energy consumption. The results obtained show the superiority of the proposed in comparison to the existing variants

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity network—the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    Resource Management in Large-scale Systems

    Get PDF
    The focus of this thesis is resource management in large-scale systems. Our primary concerns are energy management and practical principles for self-organization and self-management. The main contributions of our work are: 1. Models. We proposed several models for different aspects of resource management, e.g., energy-aware load balancing and application scaling for the cloud ecosystem, hierarchical architecture model for self-organizing and self-manageable systems and a new cloud delivery model based on auction-driven self-organization approach. 2. Algorithms. We also proposed several different algorithms for the models described above. Algorithms such as coalition formation, combinatorial auctions and clustering algorithm for scale-free organizations of scale-free networks. 3. Evaluation. Eventually we conducted different evaluations for the proposed models and algorithms in order to verify them. All the simulations reported in this thesis had been carried out on different instances and services of Amazon Web Services (AWS). All of these modules will be discussed in detail in the following chapters respectively
    corecore